ZD至顶网软件频道消息:AlphaGo和李世石的“人机围棋大战”所引进的社会效应还在不断发酵,它使得“人工智能”从一个大多数人眼中的科幻小说词汇,变成了现实生活中近在咫尺的高逼格存在。事实上,是云计算和大数据的蓬勃发展使AI人工智能迎来了新的契机,而人工智能也不仅仅意味着一个会下棋的机器人,从手机上的计算器到医疗、教育,到无人机、无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以改变每个人的生活,也可以颠覆我们的世界。
我国“十三五”规划纲要草案中首次出现了“人工智能”一词,在“科技创新2030项目”中,智能制造和机器人成为重大工程之一。同时,国家发改委也正在与有关部门制订《互联网+人工智能三年行动实施方案》,以人工智能为着力点,带动IT产业向智能化、服务化和高附加值发展。 尽管我们目前仍处于人工智能发展的初期阶段,但可以预见的是,人工智能将越来越多地与互联网、汽车、医疗等产业相融合,迎来巨大的发展空间。
全世界都需要优秀的人工智能人才,以进一步释放机器计算和机器学习技术的巨大潜能。当前,领英数据分析显示,领英平台上的全球人工智能人才数量约为25万,主要分布在美国、欧洲、印度及中国。目前拥有人工智能相关专业人才数量最多的十个国家依次为:美国、英国、印度、加拿大、法国、荷兰、德国、西班牙、澳大利亚、巴西、中国。
图:当前全球人工智能人才分布图
从中美人工智能人才的从业年限构成比例上看,美国拥有10年以上经验的人工智能人才比例接近50%,而我国十年以上经验的人才比率只有不到25%。然而,美国5年以下经验的人才比例约为28%,而我国的这一数字比率超过了40%。尽管我国人工智能专业人才总量较美国和欧洲发达国家来说还较少,10年以上资深人才尚缺乏,但从人才从业年限结构分布上来看,我国新一代人工智能人才比例较高,人才培养和发展空间广阔。
图:全球、美国、中国人工智能人才从业年限结构对比
目前我国人工智能人才最集中的Top10雇主排名中,高等院校占据四席,分别为清华大学、北京大学、中科院和浙江大学;而美国人工智能人才Top10雇主中,有三所世界顶尖大学,卡内基梅隆大学、麻省理工大学和斯坦福大学。
图:当前全球、美国、中国人工智能人才聚集的Top10雇主排名
虽然从当前的人工智能人才整理培养实力上看,我国与美国尚有差距,但是我国在理工科,特别是基础学科人才培养方面有深厚的底蕴,例如计算机相关专业、电子与电气工程、物理、数学等专业教学水平在全球保持领先地位,而这些学科都是从事人工智能和机器学习应用开发的核心基础。
图:当前美国与中国人工智能人才的专业教育背景对比
过去,人工智能专家是高校科研机构或是实验室里需要的研究型人才,但如今,越来越多的高科技公司开设机器人或者人工智能业务分部,人工智能或机器学习类专业人才正在变得炙手可热。据《经济学人》报道,Uber去年从卡耐基梅隆大学的国家机器人工程中心招募了40名员工,几乎是该研究中心员工总数的三分之一。曾任斯坦福大学讲师的百度人工智能团队负责人Andrew Ng指出,领先的科技公司对于人工智能人才来说有两大吸引力——他们能提供强大的计算能力和大量的数据资产,这对于从事机器学习领域的人才来说非常重要。
根据领英数据,目前在为人工智能Top10雇主工作的美国人才中,仅有16% 来自高等院校,大部分人才都服务于企业雇主;而我国有约32%的人才为清华大学、北京大学、中科院和浙江大学这四所科研院校工作。随着BAT、华为、大疆无人机等高科技企业在人工智能应用和开发上的不断探索,或许也将刺激更多人才和资本向人工智能商业应用领域涌入。
但这种趋势并不意味着科研机构对于人工智能人才失去了吸引力,科研机构需要将更多的重点研究项目与企业市场应用开发相对接,将高校的技术研发实力与企业的数据资产能力相结合,这样将有助于释放人工智能产业潜能,给人才更多的创新和发展空间。从而能够将我国在计算机、物理、数学等基础学科人才培养方面的优势充分利用。
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。