欺诈是蜂窝网络市场中的一个大问题,而机器学习可能会是解决这个问题的一个全新方案。通信欺诈控制协会(CFCA)的2015年全球欺诈损失调查(2015 Global Fraud Loss Survey)显示,对蜂窝网络的欺诈性使用让整个行业一年的损失大概是380亿美元。
CFCA表示,欺诈者使用包括PBX黑客、订阅欺诈、经销商欺诈、服务滥用和账户接管等方法盗窃服务供应商。
卡内基.梅隆大学的电子及计算机工程系副研究教授及智能和高性能系统实验室主任Ole J. Mengshoel表示,目前业内的欺诈监测方法依赖于预先设置量和频率阀值的静态规则。
Mengshoel撰写了一篇关于该主题的研究论文,他在论文中写道,“这意味着他们只能监测符合已知特征的欺诈类型。”他表示,“欺诈专家不断努力工作以发现新的欺诈类型,但是现代网络攻击发展的速度远比分析人员编写监测欺诈规则的速度要快。”
自适应人工智能(AI)和机器学习能够帮助弥补这些弱点,并减少蜂窝服务市场中的欺诈行为。
Mengshoel表示,“Facebook、谷歌和LinkedIn之类的创新者率先使用大数据和机器学习等方法来保护他们的订阅用户,并获得洞察力。” Mengshoel表示,“新的机器学习方法建立在这样一种看法之上:只有使用大规模采用机器学习才能够实时监测出异常状况。”
Mengshoel表示,监管和非监管机器学习的结合让分析大量数据并向欺诈分析人员发出警报的时间缩短到了几秒之内。市场上已有的产品结合了大数据的深度包检测、监管和非监管机器学习以实时完成针对欺诈、异常流量和其他网络行为网络分析。
Mengshoel表示,“它们实时的测试将成就那些能够完成数据平面以及语音网络的网络分析的供应商。流量越来越多,因此也有越来越多的欺诈发生在数据平面上。”
卡内基.梅隆大学和Argyle Data(一家为移动供应商提供大数据/机器学习分析技术的供应商)的研究报告介绍了如何利用实时异常监测实现近乎实时的欺诈识别。
这份报告展示了当前的解决方案在解决数据平面上的问题是如何无能为力,以及为什么获得数据使用特征的可见性在未来将是至关重要的。因为大量的数据流经电信网络,大数据分析的能力以及使用高级机器学习分析这些数据的能力至关重要。
在他们的研究中,Mengshoel和合著者David Staub——Argyle Data的一位数据科学家——验证了一种监管和非监管的基于机器学习的方法,这种方法能够自动学习如何根据使用数据区分正常和异常呼叫模式。
欺诈解决方案不会很快就出现。正如论文中所指出的那样,对蜂窝网络的欺诈或不可接受的使用对网络用户和运营商来说,都是越来越严重的威胁,而且欺诈方式还在不断地发展变化。在这种环境下,该报告指出,需要一种复杂的、自适应的方法来识别犯罪活动。
好文章,需要你的鼓励
2025施耐德电气智算峰会上,全新EcoStruxure(TM) Energy Operation电力综合运营系统正式亮相,定位场站级智慧能源管理中枢,集技术领先性与本土适配性于一体。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
Atlassian、Intuit和AWS三大企业巨头正在为智能代理时代做准备,重新思考软件构建方式。当前企业API为人类使用而设计,未来API将成为多模型原生接口。Intuit在QuickBooks中应用自动发票生成,使企业平均提前5天收款;AWS通过AI辅助迁移服务显著提升效率;Atlassian推出内部员工入职代理和客户代理,节省大量时间成本。专家强调需要建立强大的数据架构和信任机制。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。