ZD至顶网软件频道消息: 此前,IBM公布了一项实验性的项目,将自己曾获得“危险边缘”冠军的Watson机器人带入到物联网领域。现在,IBM继续扩大这一愿景,把Watson Analytics带入西门子基于云的物联网操作系统MindSphere中。
Watson Analytics能力实例,这里显示的是教育水平与每周收入之间的相关性(图片由IBM提供)
MindSphere是一个基于SAP HANA的工业企业物联网平台,Watson Analytics是一个利用IBM认知计算技术检查用户数据的技术。通过将Watson Analytics集成到MindSphere中,西门子将能够为企业客户提供分析可视化和仪表板来帮助他们很好地利用数据。此外,应用开发者和数据分析师可以通过应用程序接口(API)来使用分析工具。
作为对Watson Analytics的补充,IBM将为MindSphere提供其他多个分析工具,包括预测分析、规范分析和认知分析。所有这些工具旨在以下三个方面帮助工业用户:
- 改善运营效率,减少停机时间
- 预测异常和故障,并采取补救措施
- 提高产品质量和产量
原则上,在充分利用智能数据分析的情况下这三种结果都是有可能的。正如我们前面所说,问题是如何真正地筛选海量物联网数据。这是Watson的真正亮点所在;IBM对于这种多样化机器学习技术的期待众所周知,这已经在多个行业证明是有价值的,例如在医疗行业这种技术被用于帮助治疗癌症。
事实上,医疗行业正在从物联网的整合中受益匪浅。西门子是医疗保健技术的大型制造商,其医疗保健分支公司Siemens Healthineers在全球范围内提供医疗成像和诊断工具。
想想这里的各种可能性:西门子生产连接的、数据驱动的医疗产品,这些产品是通过西门子MindSphere控制的,在这个过程中Watson参与进来,通过机器学习技术诊断和解决各种医疗问题。从这方面来说,想象着未来人类医生会变得越来越多余,这就不是太大的飞跃了。
但当然,这只是物联网的冰山一角。我们已经广泛地描述了工业4.0的潜在影响,也就是工业物联网的行业应用。西门子正在努力把MindSphere打造为物联网未来的重要组成部分,利用它来推动真正的业务成果。因此,IBM把赌注压在Watson上让MindSphere占据分析领域的优势,这就不足为怪了。
你还可以想象Watson借助IBM开源Project Intu将成为物联网解决方案的领先平台。或者,你可以看看微软在认知功能方面采取的方法。无论你怎么做,请记住,机器学习和人工智能肯定会留下来,你的物联网解决方案肯定会从中受益。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。