ZD至顶网软件频道消息: 此前,IBM公布了一项实验性的项目,将自己曾获得“危险边缘”冠军的Watson机器人带入到物联网领域。现在,IBM继续扩大这一愿景,把Watson Analytics带入西门子基于云的物联网操作系统MindSphere中。
Watson Analytics能力实例,这里显示的是教育水平与每周收入之间的相关性(图片由IBM提供)
MindSphere是一个基于SAP HANA的工业企业物联网平台,Watson Analytics是一个利用IBM认知计算技术检查用户数据的技术。通过将Watson Analytics集成到MindSphere中,西门子将能够为企业客户提供分析可视化和仪表板来帮助他们很好地利用数据。此外,应用开发者和数据分析师可以通过应用程序接口(API)来使用分析工具。
作为对Watson Analytics的补充,IBM将为MindSphere提供其他多个分析工具,包括预测分析、规范分析和认知分析。所有这些工具旨在以下三个方面帮助工业用户:
- 改善运营效率,减少停机时间
- 预测异常和故障,并采取补救措施
- 提高产品质量和产量
原则上,在充分利用智能数据分析的情况下这三种结果都是有可能的。正如我们前面所说,问题是如何真正地筛选海量物联网数据。这是Watson的真正亮点所在;IBM对于这种多样化机器学习技术的期待众所周知,这已经在多个行业证明是有价值的,例如在医疗行业这种技术被用于帮助治疗癌症。
事实上,医疗行业正在从物联网的整合中受益匪浅。西门子是医疗保健技术的大型制造商,其医疗保健分支公司Siemens Healthineers在全球范围内提供医疗成像和诊断工具。
想想这里的各种可能性:西门子生产连接的、数据驱动的医疗产品,这些产品是通过西门子MindSphere控制的,在这个过程中Watson参与进来,通过机器学习技术诊断和解决各种医疗问题。从这方面来说,想象着未来人类医生会变得越来越多余,这就不是太大的飞跃了。
但当然,这只是物联网的冰山一角。我们已经广泛地描述了工业4.0的潜在影响,也就是工业物联网的行业应用。西门子正在努力把MindSphere打造为物联网未来的重要组成部分,利用它来推动真正的业务成果。因此,IBM把赌注压在Watson上让MindSphere占据分析领域的优势,这就不足为怪了。
你还可以想象Watson借助IBM开源Project Intu将成为物联网解决方案的领先平台。或者,你可以看看微软在认知功能方面采取的方法。无论你怎么做,请记住,机器学习和人工智能肯定会留下来,你的物联网解决方案肯定会从中受益。
好文章,需要你的鼓励
英伟达在SIGGRAPH大会上发布了全新的AI世界模型、库和机器人开发基础设施。其中最引人注目的是Cosmos Reason,这是一个70亿参数的"推理"视觉语言模型,专门用于物理AI应用和机器人。新发布的还包括Cosmos Transfer-2模型,能够从3D仿真场景加速合成数据生成,以及速度优化版本。公司还推出了神经重建库、RTX Pro Blackwell服务器和DGX Cloud云平台,旨在为机器人开发提供完整的解决方案。
本研究针对大语言模型中普遍存在的偏见问题,提出了一套完整的数据和AI治理框架。研究发现当前主流AI模型中37.65%的输出存在偏见,其中33.7%具有中高风险。通过开发BEATS检测系统和全生命周期治理方案,为AI系统建立了从数据收集到部署监控的完整"公平性保障体系",旨在让AI技术更好地服务全人类而非延续社会偏见。
两大企业基础设施厂商宣布产品线扩展,为客户提供更多大规模部署人工智能工作负载的选择。戴尔更新AI数据平台,新增非结构化数据引擎,并推出搭载英伟达RTX PRO 6000 Blackwell GPU的PowerEdge服务器。HPE扩展AI优化系统配置,支持自主AI和物理AI应用。两家公司均集成英伟达最新Blackwell架构GPU和AI软件套件,提供从数据处理到模型推理的完整解决方案。
浙江大学团队开发的HarmonyGuard框架首次解决了AI网络代理的安全与效率平衡难题。该系统通过三个协作的AI代理,实现自适应安全策略更新和双目标优化,在真实测试中将策略合规率提升38%,任务完成率提升20%,为构建既高效又安全的智能助手奠定重要基础。