谷歌向癌症宣战,日前透露旗下机器学习平台乳腺癌的诊断准确率比病理学家更好。
谷歌在一篇新的研究文章里解释了详细结果,文章披露谷歌利用机器学习、预测分析和模式识别诊断乳腺癌,其准确率达到89%,比人类病理学家的诊断准确率高了不少。人类病理学家采用观看生物组织样本幻灯片的方法,平均诊断准确率为73%。
谷歌研究博客周五解释称,“病理学家负责查看的是一个幻灯片上所有可见的生物组织。但每个病人会有许多幻灯片,其中的每一个幻灯片放大40倍后的像素达100多亿。想象一下,要看一千多张100亿像素的照片,要考虑每个像素。毋容置言,数据量超大,而时间通常是有限的。”
深度学习在此派上了用场,深度学习是软件机器学习的一个分支,软件机器学习模拟神经网络应用,目的是以非显式编程的形式帮助机器学习。系统在这种情况下用了内梅亨大学医学中心的图像训练算法,并针对淋巴结转移到附近乳房的乳腺癌位置的具体情况做了优化。
测试结果并不完美,有时会被被描述为只交付了“忙碌的”热地图。但其结果仍令人印象深刻,谷歌人工智能平台可以快速生成这些结果,而病理学家是却是在不限时间的情况下得出自己的结论。
上图中左边的图片来自两个淋巴结活检。中间的图片是谷歌深度学习以前的肿瘤检测结果,右边的图片是目前的结果。研究人员指两个版本之间的“噪声(潜在假阳性)明显降低”。
研究人员表示,该技术离取代病理学家还有距离,虽然这些算法经训练后很好地完成了既定任务,但这些算法与有经验的病理学家相比仍缺乏知识广度。
文章的作者在预测机器学习在医学上取代人类的速度时可能还太保守,而其他人的预测就大胆得多。Ziad Obermeyer和Ezekiel J. Emanuel曾在2016年向《新英格兰医学杂志》投了一篇题为“预测未来——大数据、机器学习和临床医学”的文章,作者在文章里表示,机器学习的应用不仅可以更可靠地预测结果和改善诊断,而且还将取代病理学家的大部分工作。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。