谷歌向癌症宣战,日前透露旗下机器学习平台乳腺癌的诊断准确率比病理学家更好。
谷歌在一篇新的研究文章里解释了详细结果,文章披露谷歌利用机器学习、预测分析和模式识别诊断乳腺癌,其准确率达到89%,比人类病理学家的诊断准确率高了不少。人类病理学家采用观看生物组织样本幻灯片的方法,平均诊断准确率为73%。
谷歌研究博客周五解释称,“病理学家负责查看的是一个幻灯片上所有可见的生物组织。但每个病人会有许多幻灯片,其中的每一个幻灯片放大40倍后的像素达100多亿。想象一下,要看一千多张100亿像素的照片,要考虑每个像素。毋容置言,数据量超大,而时间通常是有限的。”
深度学习在此派上了用场,深度学习是软件机器学习的一个分支,软件机器学习模拟神经网络应用,目的是以非显式编程的形式帮助机器学习。系统在这种情况下用了内梅亨大学医学中心的图像训练算法,并针对淋巴结转移到附近乳房的乳腺癌位置的具体情况做了优化。
测试结果并不完美,有时会被被描述为只交付了“忙碌的”热地图。但其结果仍令人印象深刻,谷歌人工智能平台可以快速生成这些结果,而病理学家是却是在不限时间的情况下得出自己的结论。
上图中左边的图片来自两个淋巴结活检。中间的图片是谷歌深度学习以前的肿瘤检测结果,右边的图片是目前的结果。研究人员指两个版本之间的“噪声(潜在假阳性)明显降低”。
研究人员表示,该技术离取代病理学家还有距离,虽然这些算法经训练后很好地完成了既定任务,但这些算法与有经验的病理学家相比仍缺乏知识广度。
文章的作者在预测机器学习在医学上取代人类的速度时可能还太保守,而其他人的预测就大胆得多。Ziad Obermeyer和Ezekiel J. Emanuel曾在2016年向《新英格兰医学杂志》投了一篇题为“预测未来——大数据、机器学习和临床医学”的文章,作者在文章里表示,机器学习的应用不仅可以更可靠地预测结果和改善诊断,而且还将取代病理学家的大部分工作。
好文章,需要你的鼓励
阿里团队开发的FantasyPortrait系统突破了传统人像动画的局限,通过隐式表情表示和掩码交叉注意力机制,实现了高质量的单人和多人肖像动画生成,特别在跨身份表情迁移方面表现出色,为视频制作和虚拟交流等领域带来新的技术可能性。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
Akamai坚持“简而未减、网络先行、拥抱开源”的独特定位。凭借“鱼与熊掌兼得”的特色,过去几年,Akamai在电商、流媒体、广告科技、SaaS、金融科技等行业客户中获得了广泛认可。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。