谷歌向癌症宣战,日前透露旗下机器学习平台乳腺癌的诊断准确率比病理学家更好。
谷歌在一篇新的研究文章里解释了详细结果,文章披露谷歌利用机器学习、预测分析和模式识别诊断乳腺癌,其准确率达到89%,比人类病理学家的诊断准确率高了不少。人类病理学家采用观看生物组织样本幻灯片的方法,平均诊断准确率为73%。
谷歌研究博客周五解释称,“病理学家负责查看的是一个幻灯片上所有可见的生物组织。但每个病人会有许多幻灯片,其中的每一个幻灯片放大40倍后的像素达100多亿。想象一下,要看一千多张100亿像素的照片,要考虑每个像素。毋容置言,数据量超大,而时间通常是有限的。”
深度学习在此派上了用场,深度学习是软件机器学习的一个分支,软件机器学习模拟神经网络应用,目的是以非显式编程的形式帮助机器学习。系统在这种情况下用了内梅亨大学医学中心的图像训练算法,并针对淋巴结转移到附近乳房的乳腺癌位置的具体情况做了优化。
测试结果并不完美,有时会被被描述为只交付了“忙碌的”热地图。但其结果仍令人印象深刻,谷歌人工智能平台可以快速生成这些结果,而病理学家是却是在不限时间的情况下得出自己的结论。
上图中左边的图片来自两个淋巴结活检。中间的图片是谷歌深度学习以前的肿瘤检测结果,右边的图片是目前的结果。研究人员指两个版本之间的“噪声(潜在假阳性)明显降低”。
研究人员表示,该技术离取代病理学家还有距离,虽然这些算法经训练后很好地完成了既定任务,但这些算法与有经验的病理学家相比仍缺乏知识广度。
文章的作者在预测机器学习在医学上取代人类的速度时可能还太保守,而其他人的预测就大胆得多。Ziad Obermeyer和Ezekiel J. Emanuel曾在2016年向《新英格兰医学杂志》投了一篇题为“预测未来——大数据、机器学习和临床医学”的文章,作者在文章里表示,机器学习的应用不仅可以更可靠地预测结果和改善诊断,而且还将取代病理学家的大部分工作。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。