ZD至顶网软件频道消息:神经网络可以为人工智能系统提供常识功能,到目前为止,只有人类才拥有常识的特质。
尽管人类里个体的常识也不尽相同,“常识”其实是个颇为模糊的概念,常识是指在一个复杂的情景中做出一个合理和好的决策,而做决策的基础是利用自己的经验和对世界的理解,而不是依靠结构化的信息;而人工智能要做到这一点是很麻烦的。
常识是一种直觉,是人类的一个概念,但据Facebook 人工智能(AI)研究团队的主管Yann LeCun介绍,神经网络和机器视觉的飞速发展有朝一日可以让软件拥有常识功能。
LeCun在接受《麻省理工学院技术评论》记者采访时表示,在神经网络这方面仍“有待”努力,机器视觉需用到神经网络。
神经网络是一个模拟人类大脑结构的人工系统,神经网络与先进机器视觉结合在一起,就可以从图像中提取数据并用于任务和决策,LeCun表示,其结果就是常识功能。
例如,如果一个图像里有一个主要物件,机器就可以利用足够多的物件类别数据识别一些特定的物件,如狗、植物或汽车。而现在有些AI系统还可以认识更抽象的分类,如婚礼、日落和风景。
LeCun表示,在五年前这是不可能的,而现在随着机器被赋予视觉后,机器的专业知识也在增长。
人工智能目前仍只局限于人类训练过的特定区域。一个婚礼上的一只狗的图像送给人工智能系统后,如果AI之前未见过这种图,AI就不能理解图像的内涵意义,其响应极有可能就是LeCun称之为 “垃圾”的东西。因此说AI缺乏常识。
Facebook希望改变这种现状。LeCun表示,你可以通过语言与智能系统互动,使其识别物件,但“语言是一种非常低带宽的信道”,人类因为有丰富的背景知识,可以帮助他们理解语言,而机器目前还不能实时联系上下文内容模拟常识功能。
解决该问题的方法大可以通过视觉学习和诸如图像和视频流等媒体达到。
LeCun 表示,“如果你告诉机器说”这是智能手机”,“这是压路机”,“有些东西可以推得动,也有些东西是推不动的”,或许这机器就可以学习世间万物运行的基础知识。这有点像婴儿的学习过程。”
LeCun 称,“在我们真正想做的事情里,其中有一条就是让机器获得大量代表现实世界限制的事实,其做法是通过视频或其他渠道观察这世界。如此,机器最后就可以获得常识。”
智能机器有能力观察世界后,上下文的缺口就可以堵上,人工智能就大有可能产生一个大飞跃,不再停滞在程序算法和答案集合的层次上。例如,Facebook想在有些领域有所突破,例如,AI系统查看了几个帧以后可以预测未来的事件。
LeCun表示,“如果我们能够训练出这样的系统,我们认为我们就已经开发出了无监督学习系统的核心。我认为,这一块极有可能大有可为。其应用不一定是视觉。我们推动人工智能发展工作的大头也在这一块。”
好文章,需要你的鼓励
Google 推出最新的 Gemini 2.5 Pro (实验版) AI 模型,并以罕见的速度向免费用户开放。该模型支持模拟推理,提高了准确性,并在 LMSYS 聊天机器人竞技场排行榜上名列前茅。免费用户可在网页上试用,但有使用限制,无法上传文件,且有未明确的token和使用次数限制。
Gartner 预测,大语言模型 (LLM) 提供商市场即将进入"灭绝"阶段。在竞争激烈的环境下,巨额资本投入成为主要挑战。预计到 2025 年,全球生成式 AI 支出将达到 6440 亿美元,较 2024 年增长 76%。专家认为,LLM 市场将经历类似云计算市场的整合,最终可能只剩少数几家主导者。
苹果公司推出新一代 AI 智能服务 Apple Intelligence,包括优先通知等多项功能。该服务现已覆盖欧盟用户和 Vision Pro 设备,并支持多种语言。新功能随 iOS 18.4 等系统更新推出,涵盖通知管理、图像生成和视频创作等方面,进一步提升用户体验。
OpenAI计划今年晚些时候向开发者社区发布一个"开放权重"模型,这是该公司自2019年以来的首次尝试。新模型将具备推理能力,类似于现有的o3-mini模型。这一战略转变旨在应对来自竞争对手的压力,同时为开发者提供更多定制和使用灵活性。虽然不完全开源,但这种方式可能有助于OpenAI在保持技术领先的同时,满足市场对更开放AI发展的需求。