ZD至顶网软件频道消息: 尽管已经拿下最新世界纪录,但IBM公司表示要让机器拥有超越人类的对话内容理解能力,恐怕还需要再等待一段时间。
IBM公司在最近的语音识别测试当中已经正式超越微软,并将词汇错误率控制在5.5%水平。
这样的错误率基本相当于人们在聆听对话时,每听到20个词汇而误解其中1个。这样的比例亦使得IBM公司顺利击败去年10月微软公司最新拿出的5.9%测试错误率结果,并成功超越了IBM自身在2016年创造的6.9%成绩。
不过IBM公司强调称,要让机器拥有超越人类的对话内容理解能力,恐怕还需要再等待一段时间。微软方面认为,其上一次公布5.9%的词汇错误率时,其语音识别方案已经达到了“人类对等”的水平。不过IBM公司则泼下冷水,表示其最新研究证明微软的庆祝还为时过早。
正因为如此,IBM公司首席研究科学家George Saon表示“我们不会为此次成绩开香槟庆祝。”
Saon同时解释称,“在实现此次里程碑式成就的过程当中,我们发现要实现真正的人类对等级别理解能力,则必须要将词汇理解错误率控制在5.1%以下。”
“尽管我们得到的5.5%成绩确实是一项不小的突破,但将人类对等理解级别确定为5.1%证明了我们未来还有很长的道路要走,而在此之后我们并不能贸然表示自己的技术成果已经拥有与人类相同的语音识别能力。”
为了实现这一5.5%的词汇理解错误率,IBM公司将长/短期记忆(简称LSTM)、一套神经网络以及WaveNet语音模型与三套强大的声学模型加以结合。其利用Switchboard语音资料训对这些模型进行了测试,其中甚至包含陌生人之间正式电话交谈的相关语音集合。
IBM公司还建立了一项“打电话回家(CallHome)”测试方案,希望利用其以更具差异及挑战性的对话内容对自身网络的理解能力进行验证。该测试中包含家庭成员间在多种主题之间进行的偶然性聊天,而且这些主题在事先完全无法确定。
IBM公司在这项测试当中获得了10.3%的词汇理解错误率,并发现人类在这一测试中的错误率仅为6.8%。
蓝色巨人在其研究论文当中强调称,Switchboard测试中存在一项数字难题。其指出,“在40名测试对话者当中,有36名曾经出现在训练数据当中,其中部分甚至参与过多达8项不同对话。我们的声学模型非常准确地记住了其在训练期间所处理过的语音模式。”
而之所以在“打电话回家”测试项目中出现较大差距,是因为声学与语言模型并未收录测试中对话者的数据。
IBM公司强调称,其目前正在努力推进语音识别技术的发展速度,旨在以此为基础将更多新功能引入其沃森语音转文本服务当中。
好文章,需要你的鼓励
铠侠正在测试最新的UFS v4.1嵌入式闪存芯片,专为智能手机和平板电脑设计,可提供更快的下载速度和更流畅的设备端AI应用性能。该芯片采用218层TLC 3D NAND技术,提供256GB、512GB和1TB容量选择。相比v4.0产品,随机写入性能提升约30%,随机读取性能提升35-45%,同时功耗效率改善15-20%。新标准还增加了主机发起碎片整理、增强异常处理等功能特性。
上海AI实验室团队提出创新的异步拍摄方案,仅用普通相机就能实现高速4D重建。该方法通过错开相机启动时间将有效帧率从25FPS提升至100-200FPS,并结合视频扩散模型修复稀疏视角导致的重建伪影。实验结果显示,新方法在处理快速运动场景时显著优于现有技术,为低成本高质量4D内容创作开辟新路径。
谷歌在伦敦云峰会上发布Firebase Studio更新,新增Gemini命令行界面集成、模型上下文协议支持和"代理模式"。代理模式提供三种AI协作层次:对话式"询问"模式用于头脑风暴,人机协作代理需开发者确认代码变更,以及几乎完全自主的代理模式。尽管谷歌声称已有数百万应用使用该平台,但目前仍需精心设计提示词,非工程师用户还无法直接创建成熟应用。
上海AI实验室联手复旦大学提出了POLAR方法,这是一种革命性的奖励模型训练技术。通过让AI学会识别不同策略间的差异而非死记评分标准,POLAR在多项任务上实现了显著提升,7B参数模型超越72B现有最强基线,为AI对齐问题提供了全新解决思路。