谷歌DeepMind项目的研究人员报告称,他们的人工智能刚刚变得更加人性化了一些:它现在会记住的事情。
在人工智能进步中需要克服的障碍之一是,你可以训练它完成一项任务,但让它记住它做了什么,并能够在未来使用这些专门知识却完全是另一回事。这被称为“灾难性遗忘”,DeepMind的研究人员表示,他们越来越接近于解决这一难题了。
在一篇博客文章中,DeepMind解释说:“当一个新任务被引入时,新的适应改写了神经网络以前获得的知识。”
简单地说,你可以训练人工智能来识别犬科动物的特征,但如果你想要切换到识别人类,它将不得不重新训练,不会保留其对狗的知识,这一点上人工智能不像人类。游戏玩法也是如此。被创造出来玩扑克的人工智能需要被覆盖后才能成为象棋大师。
DeepMind的研究人员表示,他们跟踪神经科学的研究,以及大脑是如何记住过去最重要的东西,就像动物知道某些危险是因为他们的大脑保留了最重要的数据。
DeepMind的James Kirkpatrick表示,他们已经训练他们的人工智能做到了非常类似的事情,在面对一个新的任务的时候,保留重要的数据,并覆盖不那么重要的数据。Kirkpatrick对The Guardian表示,“如果网络可以重新使用它已经学到的东西,它就那么会做的。”
他们是通过训练人工智能来学习如何顺序玩10个经典的Atari游戏做到这一点的,每个游戏需要不同的策略,但有时需要类似的技能。在学习了如何玩这些游戏——其中包括一些令人难忘的游戏,如Space Invaders and Defender——之后,人工智能学会了把十个游戏中的七个游戏玩得像人类一样好。
同时,研究人员表示,虽然他们已经证明人工智能可以顺序地学习游戏,但这并不意味着会带来更好的结果。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。