谷歌DeepMind项目的研究人员报告称,他们的人工智能刚刚变得更加人性化了一些:它现在会记住的事情。
在人工智能进步中需要克服的障碍之一是,你可以训练它完成一项任务,但让它记住它做了什么,并能够在未来使用这些专门知识却完全是另一回事。这被称为“灾难性遗忘”,DeepMind的研究人员表示,他们越来越接近于解决这一难题了。
在一篇博客文章中,DeepMind解释说:“当一个新任务被引入时,新的适应改写了神经网络以前获得的知识。”
简单地说,你可以训练人工智能来识别犬科动物的特征,但如果你想要切换到识别人类,它将不得不重新训练,不会保留其对狗的知识,这一点上人工智能不像人类。游戏玩法也是如此。被创造出来玩扑克的人工智能需要被覆盖后才能成为象棋大师。
DeepMind的研究人员表示,他们跟踪神经科学的研究,以及大脑是如何记住过去最重要的东西,就像动物知道某些危险是因为他们的大脑保留了最重要的数据。
DeepMind的James Kirkpatrick表示,他们已经训练他们的人工智能做到了非常类似的事情,在面对一个新的任务的时候,保留重要的数据,并覆盖不那么重要的数据。Kirkpatrick对The Guardian表示,“如果网络可以重新使用它已经学到的东西,它就那么会做的。”
他们是通过训练人工智能来学习如何顺序玩10个经典的Atari游戏做到这一点的,每个游戏需要不同的策略,但有时需要类似的技能。在学习了如何玩这些游戏——其中包括一些令人难忘的游戏,如Space Invaders and Defender——之后,人工智能学会了把十个游戏中的七个游戏玩得像人类一样好。
同时,研究人员表示,虽然他们已经证明人工智能可以顺序地学习游戏,但这并不意味着会带来更好的结果。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。