ZD至顶网软件频道消息:对于制造业来说,提高生产的良品率非常重要,哪怕只是1%也能产生巨大的价值。2016年8月,在工业重镇苏州,国内大型能源巨头协鑫光伏尝试用阿里ET优化标准化车间的生产参数。
据了解,光伏切片生产有着十分精密的工艺流程:一根仅0.1mm粗细的钢线不断摩擦硅锭,最终切出一片片仅0.2mm厚的硅片。车间的湿度、温度、砂浆上下部温度、导轮上下部温度等上千个参数在实时影响着生产。如此复杂的生产环境下,人工经验很难100%地保障产品质量。
ET工作的第一步,是将标准化车间所有端口的数据传入工业大脑,随后通过人工智能算法,对所有关联参数进行深度学习计算,精准分析出与良品率最相关的60个关键参数,并搭建参数曲线,并在生产过程中实时监测和控制变量。
经过ET的介入,目前,协鑫光伏的生产良品率已经提升1个百分点,每年可节省上亿元的生产成本,成为首个“中国智造1%”的威力范本。
3月29日,在云栖大会深圳峰会上,阿里云正式发布ET工业大脑,让工业生产线上庞大的钢铁躯体拥有智能大脑。阿里云总裁胡晓明表示,我们希望利用人工智能技术发挥“中国智造1%”的威力。中国制造业如果提升1%的良品率,意味着一年可以增加上万亿的利润。
目前,ET已马不停蹄地参与到新能源、化工、环保、汽车、轻工业、重工业等不同制造领域的工作中。除了协鑫外,徐工集团、中策橡胶、吉利等制造领域的标杆企业都在积极引入ET工业大脑,投入智能制造的浪潮之中。
阿里云人工智能科学家闵万里表示, 与其他领域相比,将人工智能技术应用到工业生产的复杂度更高。单从数据而言,一台民用涡轮风扇发动机的转速就能达30000转/分钟,不同型号涡轮发动机转动次数也不同,这相当于1分钟内就可以产生海量不同标准的数据。
ET工业大脑的背后是阿里云自主研发的云计算操作系统飞天——可将遍布全球的百万级服务器连成一台超级计算机。借助飞天的计算能力,阿里云ET才能胜任工业大脑的工作,指挥工业生产线上的庞大躯体。
闵万里透露,目前ET工业大脑已经在流程制造的数据化控制、生产线的升级换代、工艺改良、设备故障预测等方面开展工作。ET的目标是成为一个不断吸收专业知识的 “大脑”,可以指挥各种类型的工业躯体。“我们希望用21世纪的机器智能,帮助人类更好地指挥20世纪的机器”。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。