ZD至顶网软件频道消息:对于制造业来说,提高生产的良品率非常重要,哪怕只是1%也能产生巨大的价值。2016年8月,在工业重镇苏州,国内大型能源巨头协鑫光伏尝试用阿里ET优化标准化车间的生产参数。
据了解,光伏切片生产有着十分精密的工艺流程:一根仅0.1mm粗细的钢线不断摩擦硅锭,最终切出一片片仅0.2mm厚的硅片。车间的湿度、温度、砂浆上下部温度、导轮上下部温度等上千个参数在实时影响着生产。如此复杂的生产环境下,人工经验很难100%地保障产品质量。
ET工作的第一步,是将标准化车间所有端口的数据传入工业大脑,随后通过人工智能算法,对所有关联参数进行深度学习计算,精准分析出与良品率最相关的60个关键参数,并搭建参数曲线,并在生产过程中实时监测和控制变量。
经过ET的介入,目前,协鑫光伏的生产良品率已经提升1个百分点,每年可节省上亿元的生产成本,成为首个“中国智造1%”的威力范本。
3月29日,在云栖大会深圳峰会上,阿里云正式发布ET工业大脑,让工业生产线上庞大的钢铁躯体拥有智能大脑。阿里云总裁胡晓明表示,我们希望利用人工智能技术发挥“中国智造1%”的威力。中国制造业如果提升1%的良品率,意味着一年可以增加上万亿的利润。
目前,ET已马不停蹄地参与到新能源、化工、环保、汽车、轻工业、重工业等不同制造领域的工作中。除了协鑫外,徐工集团、中策橡胶、吉利等制造领域的标杆企业都在积极引入ET工业大脑,投入智能制造的浪潮之中。
阿里云人工智能科学家闵万里表示, 与其他领域相比,将人工智能技术应用到工业生产的复杂度更高。单从数据而言,一台民用涡轮风扇发动机的转速就能达30000转/分钟,不同型号涡轮发动机转动次数也不同,这相当于1分钟内就可以产生海量不同标准的数据。
ET工业大脑的背后是阿里云自主研发的云计算操作系统飞天——可将遍布全球的百万级服务器连成一台超级计算机。借助飞天的计算能力,阿里云ET才能胜任工业大脑的工作,指挥工业生产线上的庞大躯体。
闵万里透露,目前ET工业大脑已经在流程制造的数据化控制、生产线的升级换代、工艺改良、设备故障预测等方面开展工作。ET的目标是成为一个不断吸收专业知识的 “大脑”,可以指挥各种类型的工业躯体。“我们希望用21世纪的机器智能,帮助人类更好地指挥20世纪的机器”。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。