ZD至顶网软件频道消息:在最近使用认知技术应对眼病方面,IBM开发了一种简单的方法来帮助医生诊断糖尿病视网膜病变。
IBM周四宣布了其在应对眼病方面的最新突破,采用新的研究方法,可帮助医生诊断并对糖尿病视网膜病变(DR)进行分类。
DR是糖尿病的并发症,也是美国失明的主要原因之一。使用深度学习和视觉分析技术,IBM研究人员能够对患者糖尿病视网膜病变(DR)的严重程度进行分类,准确程度达到86%。
该方法只需20秒就能识别和分类,这可以帮助更多的医生筛检更多的患者。目前,糖尿病视网膜病变患者由专家临床医生筛检,经常是手动的,整个过程非常耗时。
根据视网膜上的损伤和视网膜血管的损伤,DR的严重程度被分为五级(无DR;轻度;中度;严重;增殖性DR)。
IBM分类疾病的新方法结合了两种分析方法——卷积神经网络(CNN)与基于字典的学习,都纳入DR特异性病理学。
研究结果在本周在墨尔本举行的IEEE国际生物医学影像学研讨会(International Symposium on Biomedical Imaging)上提出。
这项工作建立在IBM Research的深层学习技术和图像分析技术的基础之上,可帮助诊断眼部疾病。IBM在医疗保健行业使用认知技术方面投入巨大,全球共有12个研究实验室专注于对眼科疾病、肺癌和黑色素瘤的一系列疾病进行医学影像分析。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。