ZD至顶网软件频道消息:在最近使用认知技术应对眼病方面,IBM开发了一种简单的方法来帮助医生诊断糖尿病视网膜病变。
IBM周四宣布了其在应对眼病方面的最新突破,采用新的研究方法,可帮助医生诊断并对糖尿病视网膜病变(DR)进行分类。
DR是糖尿病的并发症,也是美国失明的主要原因之一。使用深度学习和视觉分析技术,IBM研究人员能够对患者糖尿病视网膜病变(DR)的严重程度进行分类,准确程度达到86%。
该方法只需20秒就能识别和分类,这可以帮助更多的医生筛检更多的患者。目前,糖尿病视网膜病变患者由专家临床医生筛检,经常是手动的,整个过程非常耗时。
根据视网膜上的损伤和视网膜血管的损伤,DR的严重程度被分为五级(无DR;轻度;中度;严重;增殖性DR)。
IBM分类疾病的新方法结合了两种分析方法——卷积神经网络(CNN)与基于字典的学习,都纳入DR特异性病理学。
研究结果在本周在墨尔本举行的IEEE国际生物医学影像学研讨会(International Symposium on Biomedical Imaging)上提出。
这项工作建立在IBM Research的深层学习技术和图像分析技术的基础之上,可帮助诊断眼部疾病。IBM在医疗保健行业使用认知技术方面投入巨大,全球共有12个研究实验室专注于对眼科疾病、肺癌和黑色素瘤的一系列疾病进行医学影像分析。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。