ZD至顶网软件频道消息:在最近使用认知技术应对眼病方面,IBM开发了一种简单的方法来帮助医生诊断糖尿病视网膜病变。
IBM周四宣布了其在应对眼病方面的最新突破,采用新的研究方法,可帮助医生诊断并对糖尿病视网膜病变(DR)进行分类。
DR是糖尿病的并发症,也是美国失明的主要原因之一。使用深度学习和视觉分析技术,IBM研究人员能够对患者糖尿病视网膜病变(DR)的严重程度进行分类,准确程度达到86%。
该方法只需20秒就能识别和分类,这可以帮助更多的医生筛检更多的患者。目前,糖尿病视网膜病变患者由专家临床医生筛检,经常是手动的,整个过程非常耗时。
根据视网膜上的损伤和视网膜血管的损伤,DR的严重程度被分为五级(无DR;轻度;中度;严重;增殖性DR)。
IBM分类疾病的新方法结合了两种分析方法——卷积神经网络(CNN)与基于字典的学习,都纳入DR特异性病理学。
研究结果在本周在墨尔本举行的IEEE国际生物医学影像学研讨会(International Symposium on Biomedical Imaging)上提出。
这项工作建立在IBM Research的深层学习技术和图像分析技术的基础之上,可帮助诊断眼部疾病。IBM在医疗保健行业使用认知技术方面投入巨大,全球共有12个研究实验室专注于对眼科疾病、肺癌和黑色素瘤的一系列疾病进行医学影像分析。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。