ZD至顶网软件频道消息:在最近使用认知技术应对眼病方面,IBM开发了一种简单的方法来帮助医生诊断糖尿病视网膜病变。
IBM周四宣布了其在应对眼病方面的最新突破,采用新的研究方法,可帮助医生诊断并对糖尿病视网膜病变(DR)进行分类。
DR是糖尿病的并发症,也是美国失明的主要原因之一。使用深度学习和视觉分析技术,IBM研究人员能够对患者糖尿病视网膜病变(DR)的严重程度进行分类,准确程度达到86%。
该方法只需20秒就能识别和分类,这可以帮助更多的医生筛检更多的患者。目前,糖尿病视网膜病变患者由专家临床医生筛检,经常是手动的,整个过程非常耗时。
根据视网膜上的损伤和视网膜血管的损伤,DR的严重程度被分为五级(无DR;轻度;中度;严重;增殖性DR)。
IBM分类疾病的新方法结合了两种分析方法——卷积神经网络(CNN)与基于字典的学习,都纳入DR特异性病理学。
研究结果在本周在墨尔本举行的IEEE国际生物医学影像学研讨会(International Symposium on Biomedical Imaging)上提出。
这项工作建立在IBM Research的深层学习技术和图像分析技术的基础之上,可帮助诊断眼部疾病。IBM在医疗保健行业使用认知技术方面投入巨大,全球共有12个研究实验室专注于对眼科疾病、肺癌和黑色素瘤的一系列疾病进行医学影像分析。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
ByteDance智能创作实验室发布的Phantom-Data是首个大规模跨情境主体一致性视频生成数据集,包含约100万个身份一致配对样本。该数据集通过创新的三阶段构建管道,从5300万视频和30亿图像中精选高质量跨场景配对,有效解决AI视频生成中的"复制粘贴"问题,显著提升文本遵循能力和视觉质量。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
普林斯顿大学研究团队开发了ReasonFlux-PRM,这是首个能深度理解AI复杂思维过程的评分系统。不同于传统只看最终答案的评估方法,新系统能评判AI思考轨迹的每个步骤质量,在数学和科学推理任务上实现了平均4.5%-12.1%的性能提升,为AI教育和训练提供了突破性的解决方案。