谷歌研究人员创建了号称是“学习一切的模型”,可利用多种类型的训练数据在不同的任务里训练人工智能(AI)模型。
谷歌希望旗下的Tensor2Tensor程序库可以加速深度学习的研究
谷歌研究人员和以AI为重点的谷歌大脑团队(Google Brain Team)打造的新Tensor2Tensor程序库里还包括其他工具及模块化组件,简单来说其就是一个程序库包,他们希望该程序库包可以加速深度学习的研究。
另外,该谷歌框架可望减少环境定制的一些工作,令深度学习模型可以处理各种任务。
谷歌研究人员在一篇文章里称此为“学习一切的模型”,到目前为止,尽管深度学习在语音识别、图像分类和翻译方面取得了成功,但每个模型都需针对特定的任务进行微调。
而且,各种模型通常是针对来自相同“域”的任务进行训练的,例如,一种翻译任务的训练用的是其他翻译任务。
这些因素凑在一起将减缓了深度学习的研究,并且也没有遵循人类大脑的工作原理,人类大脑能够从一个挑战中学会一些东西,并将其应用于解决新的任务。
而谷歌创建的模型是针对各种任务训练的,包括图像识别、翻译任务、图像字幕和语音识别等。
谷歌研究人员称该单一模型可以同时从多个领域学习许多的任务,而且该模型还能够传递知识。该模型能够从拥有大量训练数据的任务里学习,并将学习到知识应用到一些数据有限的任务。
Tensor2Tensor程序库由谷歌大脑团队的研究人员和工程师维护,该程序库提供了一套用于训练TensorFlow深入学习模型的开源工具。据Tensor2Tensor的GitHub网页(https://github.com/tensorflow/tensor2tensor)介绍,Tensor2Tensor库“的目标是最大限度地提高想法带宽并最大限度地减少执行延迟”。
谷歌大脑团队高级研究科学家及文章的主要作者Lukasz Kaiser做了如下解释,“Tensor2Tensor库有助于为各种机器学习应用程序创建最先进的模型,例如翻译、解析、图像字幕等等,有了Tensor2Tensor,就能快速探索各种想法。”
另外,Tensor2Tensor库还包括一个从谷歌大脑研究人员最近发表的论文里获取的数据集和模型库。
Kaiser日前还发布了用于机器翻译的BLEU基准测试结果,结果表明,Tensor2Tensor的最佳模式可提供业内最佳结果,而用的GPU数量更少,用的时间比过去未使用Tensor2Tensor的模型少很多。
Kaiser 表示,“用了Tensor2Tensor,就可以在一天内使用单个GPU得到业内最佳结果,这一点很了不起。”
Tensor2Tensor库还包括相关的数据集、模型架构、优化器、学习速率衰减方案、超参数等等,并包含这些组件之间的标准接口。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。