至顶网软件频道消息: 亚马逊推出了其最新的GPU计算产品实例线G3。有三种配置:g3.4xlarge(1 GPU)、g3.8xlarge(2 GPU)和g3.16xlarge(4GPU)。该产品线适用于3D建模、可视化、视频编码和其他图形密集型应用程序。
亚马逊的G2系列于2013年首次亮相。2015年年底高调推出的是g2.8xlarge,有四个Nvidia Grid GPU,每个GPU的视频内存为4GB,CUDA内核为1536个。亚马逊在一篇博文中表示,您可以编码4个1080p视频流或8个实时720p视频流。
新G3系列中的GPU具备8GB的GPU内存、2,048个并行处理核心、多显示器支持、增强的图形呈现效果、Nvidia GRID Virtual Workstation功能和增强型网络。亚马逊在另一篇博客文章中表示,您可以录制10个H.265(HVEC)1080p30流以及高达18 H.264 1080p30流。
和以前拥有60GiB内存和32 vCPU的g2.8xlarge对比,新的g3.16xlarge实例配备了488 GiB的主内存和64 vCPU。
根据亚马逊目前的价格表,Linux上的g2.8xlarge在爱尔兰根据使用量计费的价格是每小时2.808美元,而g3.16xlarge的价格为4.84美元。因此,价格还是有些贵的。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。