至顶网软件频道消息:
DeepMind科技有限公司的阿尔法狗在古老的围棋游戏中超过了所有的人类玩家,但是这家Alphabet有限公司旗下的实验室还在继续改进其人工智能冠军。在今天发表的一篇新的研究论文中,DeepMind展示了阿尔法狗在过去两年中的进步情况:它现在已经如此聪明,可以在几乎完全没有人类资源的情况下学习。
DeepMind在《Nature》杂志上发表了一篇题为《不借助人类知识精通围棋游戏》的新论文,并介绍了新的AlphaGo Zero。与以前版本的阿尔法狗不同——之前版本的阿尔法狗是通过分析从人类玩家的真实围棋棋谱中提取的数据来进行学习,而AlphaGo Zero则完全是通过自行随机游戏,自主地学习游戏规则的。
AlphaGo Zero和之前的版本还有一些其他的不同。例如,新版本通过计算机视觉使用白色和黑色棋子作为输入,而不是依赖于定制设计的输入。AlphaGo Zero还只使用了一个神经网络而不是两个神经网络,它依靠该网络来评估位置,而不是针对可能的下法使用快速走子的方法。
Alphabet为了一个棋盘游戏投入了这么大量的研究看起来可能显得很奇怪,但是AlphaGo Zero的成功证明了未来人工智能可以在没有大量数据的情况下被训练的可能性。这在真实数据稀缺或难以收集的领域(如执法或医学领域)中将是一个主重大的优点。
事实上,对机器学习的一个一直存在的批评是,和儿童相比,它要想识别对象所需要的数据和能源要多得多。这表明在机器学习领域占据领导地位的深度学习神经网络近年来在图像和语音识别方面的突破远不能真正地模仿人类的大脑。
DeepMind认为,AlphaGo Zero代表了构建可以解决困难问题的人工智能的重大进步,同样的强化学习方法也可以应用于广泛的用例。
DeepMind首席执行官Demis Hassabis和研究科学家David Silver在一篇博文中表示,“在数百万局阿尔法狗与阿尔法狗对弈的过程中,系统从头开始逐渐学习了围棋的游戏,在短短几天内累积了人类数千年的知识。”他们表示,“AlphaGo Zero还发现了新的知识,开发非常规的策略和创新的下法,回应并超越了在同李世石和柯洁对弈时使用的技术。”
虽然研究人员表示虽然为时尚早,但AlphaGo Zero构成了迈向最终目标的“关键步骤”。他们表示:“如果类似的技术可以应用于其他结构化问题,如蛋白质折叠、减少能源消耗或寻找革命性的新材料,这些突破将有可能会产生积极的社会影响。”
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。