至顶网软件频道消息:
DeepMind科技有限公司的阿尔法狗在古老的围棋游戏中超过了所有的人类玩家,但是这家Alphabet有限公司旗下的实验室还在继续改进其人工智能冠军。在今天发表的一篇新的研究论文中,DeepMind展示了阿尔法狗在过去两年中的进步情况:它现在已经如此聪明,可以在几乎完全没有人类资源的情况下学习。
DeepMind在《Nature》杂志上发表了一篇题为《不借助人类知识精通围棋游戏》的新论文,并介绍了新的AlphaGo Zero。与以前版本的阿尔法狗不同——之前版本的阿尔法狗是通过分析从人类玩家的真实围棋棋谱中提取的数据来进行学习,而AlphaGo Zero则完全是通过自行随机游戏,自主地学习游戏规则的。
AlphaGo Zero和之前的版本还有一些其他的不同。例如,新版本通过计算机视觉使用白色和黑色棋子作为输入,而不是依赖于定制设计的输入。AlphaGo Zero还只使用了一个神经网络而不是两个神经网络,它依靠该网络来评估位置,而不是针对可能的下法使用快速走子的方法。
Alphabet为了一个棋盘游戏投入了这么大量的研究看起来可能显得很奇怪,但是AlphaGo Zero的成功证明了未来人工智能可以在没有大量数据的情况下被训练的可能性。这在真实数据稀缺或难以收集的领域(如执法或医学领域)中将是一个主重大的优点。
事实上,对机器学习的一个一直存在的批评是,和儿童相比,它要想识别对象所需要的数据和能源要多得多。这表明在机器学习领域占据领导地位的深度学习神经网络近年来在图像和语音识别方面的突破远不能真正地模仿人类的大脑。
DeepMind认为,AlphaGo Zero代表了构建可以解决困难问题的人工智能的重大进步,同样的强化学习方法也可以应用于广泛的用例。
DeepMind首席执行官Demis Hassabis和研究科学家David Silver在一篇博文中表示,“在数百万局阿尔法狗与阿尔法狗对弈的过程中,系统从头开始逐渐学习了围棋的游戏,在短短几天内累积了人类数千年的知识。”他们表示,“AlphaGo Zero还发现了新的知识,开发非常规的策略和创新的下法,回应并超越了在同李世石和柯洁对弈时使用的技术。”
虽然研究人员表示虽然为时尚早,但AlphaGo Zero构成了迈向最终目标的“关键步骤”。他们表示:“如果类似的技术可以应用于其他结构化问题,如蛋白质折叠、减少能源消耗或寻找革命性的新材料,这些突破将有可能会产生积极的社会影响。”
好文章,需要你的鼓励
四川大学研究团队发现,当前先进的AI模型在面对信息不完整的数学问题时,缺乏主动询问澄清信息的能力,更倾向于基于假设给出答案。
中南大学等机构联合发布TextAtlas5M数据集,包含500万图像-文本对,专门解决AI长文本图像生成难题。该数据集平均文本长度148.82词,远超现有数据集,涵盖广告、学术、教育等真实场景。配套的TextAtlasEval基准测试显示,即使最先进的商业模型也面临显著挑战,为AI图像生成技术指明了新的发展方向。
从11岁就梦想造人形机器人的Bernt Bornich,用'huggable'形容他的Neo Gamma机器人——这个能举起150磅的66磅'运动员',正以家庭为试验场突破AI学习瓶颈:'工厂20小时就触及学习天花板,而家庭环境的多样性才是通往AGI的钥匙'。
剑桥大学研究团队创建了史上最难的AI视觉测试ZeroBench,包含100道精心设计的视觉推理题目。在这项测试中,包括GPT-4o、Claude、Gemini在内的20个全球最先进AI模型全部得了0分,暴露了当前AI在基础视觉理解上的严重缺陷。研究发现AI主要在计数、空间推理等基础任务上失败,而非逻辑推理能力不足。