至顶网软件频道消息:
DeepMind科技有限公司的阿尔法狗在古老的围棋游戏中超过了所有的人类玩家,但是这家Alphabet有限公司旗下的实验室还在继续改进其人工智能冠军。在今天发表的一篇新的研究论文中,DeepMind展示了阿尔法狗在过去两年中的进步情况:它现在已经如此聪明,可以在几乎完全没有人类资源的情况下学习。
DeepMind在《Nature》杂志上发表了一篇题为《不借助人类知识精通围棋游戏》的新论文,并介绍了新的AlphaGo Zero。与以前版本的阿尔法狗不同——之前版本的阿尔法狗是通过分析从人类玩家的真实围棋棋谱中提取的数据来进行学习,而AlphaGo Zero则完全是通过自行随机游戏,自主地学习游戏规则的。
AlphaGo Zero和之前的版本还有一些其他的不同。例如,新版本通过计算机视觉使用白色和黑色棋子作为输入,而不是依赖于定制设计的输入。AlphaGo Zero还只使用了一个神经网络而不是两个神经网络,它依靠该网络来评估位置,而不是针对可能的下法使用快速走子的方法。
Alphabet为了一个棋盘游戏投入了这么大量的研究看起来可能显得很奇怪,但是AlphaGo Zero的成功证明了未来人工智能可以在没有大量数据的情况下被训练的可能性。这在真实数据稀缺或难以收集的领域(如执法或医学领域)中将是一个主重大的优点。
事实上,对机器学习的一个一直存在的批评是,和儿童相比,它要想识别对象所需要的数据和能源要多得多。这表明在机器学习领域占据领导地位的深度学习神经网络近年来在图像和语音识别方面的突破远不能真正地模仿人类的大脑。
DeepMind认为,AlphaGo Zero代表了构建可以解决困难问题的人工智能的重大进步,同样的强化学习方法也可以应用于广泛的用例。
DeepMind首席执行官Demis Hassabis和研究科学家David Silver在一篇博文中表示,“在数百万局阿尔法狗与阿尔法狗对弈的过程中,系统从头开始逐渐学习了围棋的游戏,在短短几天内累积了人类数千年的知识。”他们表示,“AlphaGo Zero还发现了新的知识,开发非常规的策略和创新的下法,回应并超越了在同李世石和柯洁对弈时使用的技术。”
虽然研究人员表示虽然为时尚早,但AlphaGo Zero构成了迈向最终目标的“关键步骤”。他们表示:“如果类似的技术可以应用于其他结构化问题,如蛋白质折叠、减少能源消耗或寻找革命性的新材料,这些突破将有可能会产生积极的社会影响。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。