至顶网软件频道消息: IBM研究员推出了一项云分析服务,将应用与一系列大型地理空间数据集连接起来,这些数据集涵盖地图、卫星、天气和人口变化等。
该服务被称为PAIRS Geoscope,开发人员可使用IBM的REST API来为该服务添加基于地理空间和时间的数据到他们自己的应用中。
PAIRS Geoscope目前仅限科学家使用,但IBM研究院现在已经上线了一个网站,供所有开发人员测试该资源。
PAIRS是Physical Analytics Integrated Repository and Services的缩写,是IBM应对混合大型结构化数据集(如卫星和天气数据)与非结构化数据(如推文中的位置和时间戳数据)挑战所做出的回应。
IBM Watson研究人员在2015年的一篇论文中首次描述了这种PAIRS集成引擎,并指出PAIRS是基于大数据技术Hadoop和HBase构建的。可以承担数据采集中的"苦力工作",并在多个数据源跨多种数据格式对分析洞察进行搜索。
IBM PAIRS有很多可用的数据集,包括美国航空航天局Aqua和Terra卫星数据、美国政府的土壤数据、NOAA天气预报、美国地质调查局Landsat数据等等。
Google在2016年推出地理空间服务,2016年开始让开发人员可以访问Landsat和欧盟Sentinel-2卫星图像,其中包含近1.5PB的数据。Google Earth的两个关键数据集引入Google Cloud,使得开发人员能够利用机器学习和计算引擎工具构建预测服务。
2016年,IBM研究人员还开始从大疆Phantom 3 Standard收集的无人机地球图像,并将其上传到PAIRS,在PAIRS图像与其他数据源相匹配,以便与土壤属性、卫星和天气等数据进行叠加。
PAIRS用户还可以上传专有数据以与现有数据层相结合,例如,结合物联网传感器数据。此功能在物联网部署中可以发挥作用,例如可用于测量土壤湿度以预测灌溉需求。
事实上,PAIRS可以追溯到IBM协助美国大型葡萄园E&J Gallo Winery开发的一个物联网精确灌溉系统。数以百计的传感器、卫星图像和云通信网络结合天气、气象和大气数据,以帮助监测植被、估计水分损失并预测未来的灌溉需求。
IBM表示,已经与农业、金融、能源和气象等领域的客户进行了试验性的平台部署。PAIRS存储库的数据量每天增长数TB。据IBM称,PAIRS可以"自动摄取、管理和无缝集成各种形式的地理空间和时间数据",将大型、异构和复杂的数据集"转换为一个整齐排列的索引结构,专为高效检索和查询而设计"。
好文章,需要你的鼓励
大数据可观测性初创公司Monte Carlo Data推出全新Agent Observability产品,为AI应用提供全方位数据和AI可观测性。该工具帮助团队检测、分类和修复生产环境中AI应用的可靠性问题,防止代价高昂的"幻觉"现象,避免客户信任度下降和系统宕机。新产品采用大语言模型作为评判器的技术,能够同时监控AI数据输入和输出,提供统一的AI可观测性解决方案。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
网络安全公司Aikido披露了迄今最大规模的npm供应链攻击事件。攻击者通过钓鱼邮件获取维护者账户凭证,向18个热门JavaScript包注入恶意代码,这些包每周下载量超过26亿次。恶意代码专门劫持加密货币交易,监控浏览器API接口将资金转移至攻击者地址。受影响的包括chalk、debug等广泛使用的开发工具库。虽然攻击在5分钟内被发现并及时公开,但专家警告此类上游攻击极具破坏性,可能与朝鲜黑客组织相关。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。