至顶网软件频道消息: IBM研究员推出了一项云分析服务,将应用与一系列大型地理空间数据集连接起来,这些数据集涵盖地图、卫星、天气和人口变化等。
该服务被称为PAIRS Geoscope,开发人员可使用IBM的REST API来为该服务添加基于地理空间和时间的数据到他们自己的应用中。
PAIRS Geoscope目前仅限科学家使用,但IBM研究院现在已经上线了一个网站,供所有开发人员测试该资源。
PAIRS是Physical Analytics Integrated Repository and Services的缩写,是IBM应对混合大型结构化数据集(如卫星和天气数据)与非结构化数据(如推文中的位置和时间戳数据)挑战所做出的回应。
IBM Watson研究人员在2015年的一篇论文中首次描述了这种PAIRS集成引擎,并指出PAIRS是基于大数据技术Hadoop和HBase构建的。可以承担数据采集中的"苦力工作",并在多个数据源跨多种数据格式对分析洞察进行搜索。
IBM PAIRS有很多可用的数据集,包括美国航空航天局Aqua和Terra卫星数据、美国政府的土壤数据、NOAA天气预报、美国地质调查局Landsat数据等等。
Google在2016年推出地理空间服务,2016年开始让开发人员可以访问Landsat和欧盟Sentinel-2卫星图像,其中包含近1.5PB的数据。Google Earth的两个关键数据集引入Google Cloud,使得开发人员能够利用机器学习和计算引擎工具构建预测服务。
2016年,IBM研究人员还开始从大疆Phantom 3 Standard收集的无人机地球图像,并将其上传到PAIRS,在PAIRS图像与其他数据源相匹配,以便与土壤属性、卫星和天气等数据进行叠加。
PAIRS用户还可以上传专有数据以与现有数据层相结合,例如,结合物联网传感器数据。此功能在物联网部署中可以发挥作用,例如可用于测量土壤湿度以预测灌溉需求。
事实上,PAIRS可以追溯到IBM协助美国大型葡萄园E&J Gallo Winery开发的一个物联网精确灌溉系统。数以百计的传感器、卫星图像和云通信网络结合天气、气象和大气数据,以帮助监测植被、估计水分损失并预测未来的灌溉需求。
IBM表示,已经与农业、金融、能源和气象等领域的客户进行了试验性的平台部署。PAIRS存储库的数据量每天增长数TB。据IBM称,PAIRS可以"自动摄取、管理和无缝集成各种形式的地理空间和时间数据",将大型、异构和复杂的数据集"转换为一个整齐排列的索引结构,专为高效检索和查询而设计"。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。