至顶网软件频道消息: IBM研究员推出了一项云分析服务,将应用与一系列大型地理空间数据集连接起来,这些数据集涵盖地图、卫星、天气和人口变化等。
该服务被称为PAIRS Geoscope,开发人员可使用IBM的REST API来为该服务添加基于地理空间和时间的数据到他们自己的应用中。
PAIRS Geoscope目前仅限科学家使用,但IBM研究院现在已经上线了一个网站,供所有开发人员测试该资源。
PAIRS是Physical Analytics Integrated Repository and Services的缩写,是IBM应对混合大型结构化数据集(如卫星和天气数据)与非结构化数据(如推文中的位置和时间戳数据)挑战所做出的回应。
IBM Watson研究人员在2015年的一篇论文中首次描述了这种PAIRS集成引擎,并指出PAIRS是基于大数据技术Hadoop和HBase构建的。可以承担数据采集中的"苦力工作",并在多个数据源跨多种数据格式对分析洞察进行搜索。
IBM PAIRS有很多可用的数据集,包括美国航空航天局Aqua和Terra卫星数据、美国政府的土壤数据、NOAA天气预报、美国地质调查局Landsat数据等等。
Google在2016年推出地理空间服务,2016年开始让开发人员可以访问Landsat和欧盟Sentinel-2卫星图像,其中包含近1.5PB的数据。Google Earth的两个关键数据集引入Google Cloud,使得开发人员能够利用机器学习和计算引擎工具构建预测服务。
2016年,IBM研究人员还开始从大疆Phantom 3 Standard收集的无人机地球图像,并将其上传到PAIRS,在PAIRS图像与其他数据源相匹配,以便与土壤属性、卫星和天气等数据进行叠加。
PAIRS用户还可以上传专有数据以与现有数据层相结合,例如,结合物联网传感器数据。此功能在物联网部署中可以发挥作用,例如可用于测量土壤湿度以预测灌溉需求。
事实上,PAIRS可以追溯到IBM协助美国大型葡萄园E&J Gallo Winery开发的一个物联网精确灌溉系统。数以百计的传感器、卫星图像和云通信网络结合天气、气象和大气数据,以帮助监测植被、估计水分损失并预测未来的灌溉需求。
IBM表示,已经与农业、金融、能源和气象等领域的客户进行了试验性的平台部署。PAIRS存储库的数据量每天增长数TB。据IBM称,PAIRS可以"自动摄取、管理和无缝集成各种形式的地理空间和时间数据",将大型、异构和复杂的数据集"转换为一个整齐排列的索引结构,专为高效检索和查询而设计"。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。