至顶网软件频道消息: 随着人工智能的火热,现在每一家技术厂商都在匆匆忙忙地将人工智能的标签贴到自己的产品和服务上。直到今天之前,我们一直都还认为微软避免在Windows上贴人工智能标签的方面表现得相当不错。
但是这种情况到3月7日已经发生了改变,该公司最近的Windows Developer Day活动发布了新的消息。吸引了大家的眼球。
微软正在告诉开发人员,下一个发布的Windows 10版本仍将按照其代码代号命名--"Redstone 4",该版本将使开发人员能够"使用人工智能以提供更强大、更引人入胜的体验。"
微软的高管们表示,Windows 10中现在有了一个人工智能平台,使开发人员能够"在其Windows 10设备上的应用程序中使用预先训练好的机器学习功能。"
这到底是什么意思?
我们认为微软正在试图寻找将其Windows 10 PCs融入该公司的"智能云,智能端"使命之中的方法。智能端在去年的Build开发者大会上是一个很热门的流行词。(估计在今年5月份的Build大会上也会是一大主题。)简而言之,它意味着在边缘设备--物联网设备、手机、HoloLens 之类的AR/VR头戴式设备和PC上进行更多的本地处理,这样开发者和用户能够获得更好的性能。
微软的官员们告诉开发者,他们可以利用PC的本地处理能力进行分析和处理--他们目前已经能够做到这一点。他们还建议开发者可以使用微软的云人工智能平台,在Azure中使用培训模式,并在云中处理工作负载--两者都是他们今天就可以做的事情。
微软已经宣布Windows支持ONNX,这是一种不断发展的机器语言模型标准格式,得到了微软、Facebook和亚马逊的支持。微软的官员们表示,从Visual Studio Preview 15.7预览版开始,开发人员可以将ONNX文件添加到通用Windows平台(Universal Windows Platform)项目之中,让它们能够自动生成模型。
也许所有这些关于人工智能的言论都只不过是微软在试图让Windows 10对于华尔街以及其他的一些只关心这家雷德蒙德的公司如何实现云智能的人来说显得更加有趣。否则,我不确定是否还会有这么多这些消息。
凭借其Office服务、Bing、认知服务和某些微软制作的应用程序(例如Photos应用程序),微软正在更多地利用人工智能技术。但通过宣称Windows 10 Redstone 4包含了具有某种独特性的人工智能平台,Windows团队也已经踏上了人工智能之路。
信息更新:微软在网络广播期间发布了一个名为Windows ML的、新的Windows 10应用程序编程接口(API)的预览版。该公司的官员们表示,该API将使开发人员能够构建机器学习模型、在Azure中进行训练、然后直接使用Visual Studio将其放进他们自己的应用程序之中,然后在他们的电脑上运行这些模型。他们表示,Windows ML将在2018年的某个时间推出。
微软的官员们表示,Windows ML将在未来某个时刻与专门针对人工智能的处理器协作,例如英特尔的Movidius VPU。
信息更新第二波:这里是来自这家公司其他部门关于今天发布的这个消息的意见。
微软的机器学习博客发布了一篇标题为《可以在上百万的Windows 设备上本地运行的ONNX模型》(ONNX Models to be Runnable Natively on 100s of Millions of Windows Devices)的博客文章,这篇文章解释了开发人员可以如何将ONNX模型纳入他们的应用程序,以便在具备硬件加速功能的设备上本地运行这些应用程序。
好文章,需要你的鼓励
在Meta Connect大会上,Meta展示了新一代Ray-Ban智能眼镜的硬件实力,配备神经腕带支持手势控制,电池续航翻倍,摄像头性能提升。然而AI演示却频频失败,包括Live AI烹饪指导、WhatsApp通话和实时翻译功能都出现问题。尽管Meta在智能眼镜硬件方面表现出色,但AI软件仍远未达到扎克伯格提出的"超级智能"目标。文章建议Meta考虑开放AI生态,允许用户选择其他AI服务商,这可能帮助Meta在AI硬件市场获得优势。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
英伟达同意以50亿美元收购英特尔股份,双方将合作开发多代数据中心和PC产品。英伟达将以每股23.28美元的价格收购约4%的英特尔股份,成为其最大股东之一。两家公司将通过NVLink接口整合各自架构,实现CPU和GPU间的高速数据传输。英特尔将为英伟达AI平台定制x86处理器,并开发集成RTX GPU的x86系统级芯片,用于消费级PC市场。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。