至顶网软件频道消息: 微软正试图通过新的安全操作系统和针对微控制器的服务来保护边缘设备。
这个名为Azure Sphere的新堆栈包括经过认证的微控制器、用于这些微控制器的"Azure Sphere"操作系统以及与这些设备相关"Azure Sphere安全服务"。
据悉,Azure Sphere的负责人是Galen Hunt,最新头衔是微软Azure Sphere合作伙伴总经理。
其实,这一新举措并非没有先例。去年,有一篇关于"Sopris项目"的文章,这是微软研究院为保护低成本互联网连接设备进行的一个项目。而Hunt是该项目的负责人之一。
Sopris的项目团队表示,他们正在与芯片合作伙伴联发科(MediaTek)合作,修改他们的一款控制器--支持Wi-Fi的MT7687--以创建高度安全的微控制器原型。
微软的研究人员表示,早期的研究结果表明,"即使是对价格最敏感的设备也应该重新设计,以实现对社会安全至关重要的高设备安全性水平。"
微软在RSA 2018上宣布推出Azure Sphere。根据4月16日宣布该计划的博客透露,该公司宣布推出的新Azure Sphere认证微控制器将实时和应用处理器与微软的内置定制芯片安全技术和连接功能相结合。微软的官员们表示,这种芯片的安全性包括向Xbox "学习"的如何确保这些微控制器和设备的安全。
第一款Azure Sphere芯片将是MediaTek MT3620。微软在这些被其称为"Pluton"的安全多控制器中加入了一个新的安全子系统。根据微软Azure Sphere网站透露,这些控制器本身包含了Cortex-A处理器的强大功能以及Cortex-M类处理器的实时保护。
Azure Sphere OS包含了一个定制化的Linux内核,以及用于隔离代码的安全应用程序容器。由于微软现在更关心的是销售Azure服务而不是让Windows嵌入地到处都是,所以老实说,在这里依靠Linux来定制内核并不令人感到意外。但该公司仍然在吹嘘这是它第一天提供定制的Linux内核。(几年前,微软确实为数据中心交换机构建了一个定制的Linux交换机操作系统,但它并不真正"销售"这个操作系统。)
Azure Sphere安全服务提供身份验证、威胁响应并提供有关设备和应用程序故障的信息。开发人员可以使用Visual Studio Tools for Azure Sphere编写应用程序,并可将其Azure Sphere设备连接到Azure以获取遥测数据、消息传递以及使用Azure IoT Hub和其他服务。
微软官方表示,Azure Sphere到今天还在进行私有预览,开发工具包将在今年年中推出。他们表示,微软预计到2018年年底,第一批Azure Sphere设备将会"上市"。
微软今天也发布了其他一些RSA公告。
该公司推出了Microsoft Automated Threat Detection and Remediation。该功能建立在其Windows Defender Advanced Threat Protection服务之上,增加了条件访问以提供实时风险评估。它将在未来的Windows 10更新中出现。(我不确定这是否意味着会出现在Redstone 4或者5中--我估计很有可能会出现在5中--但是微软表示它现在已经在进行预览了。)
该公司的官员们表示,微软正在为客户和开发人员打造一个Microsoft Intelligent Security Graph的界面。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。