微软公司日前发布了Phi-4的代码。Phi-4是一个可以生成文本并解决数学问题的小型语言模型。
微软上个月首次详细介绍了Phi-4模型。最初的Phi-4只能通过微软的Azure Foundry人工智能开发服务访问。现在,Phi-4模型可以从Hugging Face下载。Hugging Face是一个托管开源人工智能项目的热门网站。
Phi-4是微软于2023年推出的小型语言模型系列的第四代版本,拥有140亿个参数,这些参数设定决定了神经网络如何处理数据。微软的研究人员利用英伟达公司提供的1,920块H100图形处理器集群,花了21天训练Phi-4。
Phi-4模型基于行业标准的 Transformer 架构。Transformer架构是大多数大型语言模型的基础。Transformer 模型收到用户提示后会将输入分解为单个单词,并通过分析上下文的文本确定每个单词的含义。这种模型还会优先处理上下文文本中被认为最相关的部分。
Phi-4采用的是所谓纯解码器的Transformer架构变体。标准的Transformer模型会分析单词前后的文本来确定其含义。纯解码器模型则只关注单词之前的文本,从而减少了需要处理的数据量,降低了推理成本。
微软在一份研究论文中详细介绍了如何使用两种后训练优化技术提升Phi-4的输出质量。这两种方法分别被称为直接偏好优化和监督微调。两种方法都需要向语言模型提供示例,用于指导模型如何生成符合要求的即时响应。
微软在一次内部评估中将Phi-4与Llama 3.3 70B 进行了比较,后者的参数是Phi-4的五倍。微软表示,在常用的GPQA和MATH基准测试中,Phi-4的表现更好。GPQA和MATH两个测试数据集分别包含科学问题和数学问题。
在过去一年中,各大科技公司争相开源了越来越多的小型语言模型,Phi-4 也正式加入了这一行列。
谷歌公司去年二月推出了一系列名为 Gemma 的小型语言模型。Gemma系列模型的算法拥有20亿到270亿个参数。谷歌表示,270亿个参数的Gemma版本在性能上优于参数数量是其两倍的模型。
Meta Platforms 公司最近发布了两个参数少于 50 亿 Llama 3.2 模型。随后,Meta又开源了这些模型的更高效版本,这些版本实现了机器学习里的量化技术。量化技术可以压缩神经网络获取的数据,减少处理数据所需的硬件数量。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。