至顶网软件频道消息: 微软日前开始在Azure里添加对NVIDIA GPU项目的新级别支持,此举可能令运行深度学习和其他高性能计算(HPC)工作负载的人受益。两家宣布推出配有GPU加速软件的预配置容器,可助数据科学家、开发人员和研究人员在运行HPC任务之前省掉许多整合和测试步骤。
客户可以选择35个GPU加速容器,可用于深度学习软件、HPC应用程序、HPC可视化工具等,这些工作负载都可以在以下配有NVIDIA GPU的微软 Azure实例类型上运行:
● NCv3(1、2或4个NVIDIA Tesla V100 GPU)
● NCv2(1、2或4个NVIDIA Tesla P100 GPU)
● ND(1、2或4个NVIDIA Tesla P40 GPU)
NVIDIA还提到,这些相同的NVIDIA GPU云(NGC)容器可以跨Azure实例类型工作,即使GPU类型或数量不同也可以跨Azure实例类型工作。微软Azure市场里有一个预先配置的Azure虚拟机映像,包含运行NGC容器所需的所有内容(https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview ) 。
微软今天还面向普通用户推出了“Azure CycleCloud”,可用于“创建、管理、操作和优化Azure中任何规模的HPC集群工具”。
好文章,需要你的鼓励
工业升级的关键,或许在于智能本身。“工业+机器人”将成为通向下一阶段工业体系的核心抓手。——黄仁勋。
浙江大学等联合研究发现,AI强化学习效果取决于"模型-任务对齐"程度。当AI擅长某任务时,单样本训练、错误奖励等非常规方法也有效;但面对陌生任务时,这些方法失效,只有标准训练有用。研究团队通过大量实验证实,这种"舒适圈"现象比数据污染更能解释训练差异,为AI训练策略优化提供了新思路。
瑞士政府正式发布了自主研发的人工智能模型,该模型完全基于公共数据进行训练。这一举措标志着瑞士在AI技术自主化方面迈出重要一步,旨在减少对外国AI技术的依赖,同时确保数据安全和隐私保护。该模型的推出体现了瑞士对发展本土AI能力的战略重视。
巴赫切希尔大学研究团队通过对五种不同规模YOLO模型的量化鲁棒性测试发现,静态INT8量化虽能带来1.5-3.3倍速度提升,但会显著降低模型对噪音等图像损伤的抵抗能力。他们提出的混合校准策略仅在大型模型处理噪音时有限改善,揭示了效率与鲁棒性平衡的复杂挑战。