至顶网软件频道消息: 微软日前开始在Azure里添加对NVIDIA GPU项目的新级别支持,此举可能令运行深度学习和其他高性能计算(HPC)工作负载的人受益。两家宣布推出配有GPU加速软件的预配置容器,可助数据科学家、开发人员和研究人员在运行HPC任务之前省掉许多整合和测试步骤。
客户可以选择35个GPU加速容器,可用于深度学习软件、HPC应用程序、HPC可视化工具等,这些工作负载都可以在以下配有NVIDIA GPU的微软 Azure实例类型上运行:
● NCv3(1、2或4个NVIDIA Tesla V100 GPU)
● NCv2(1、2或4个NVIDIA Tesla P100 GPU)
● ND(1、2或4个NVIDIA Tesla P40 GPU)
NVIDIA还提到,这些相同的NVIDIA GPU云(NGC)容器可以跨Azure实例类型工作,即使GPU类型或数量不同也可以跨Azure实例类型工作。微软Azure市场里有一个预先配置的Azure虚拟机映像,包含运行NGC容器所需的所有内容(https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview ) 。
微软今天还面向普通用户推出了“Azure CycleCloud”,可用于“创建、管理、操作和优化Azure中任何规模的HPC集群工具”。
好文章,需要你的鼓励
尽管AI实验广泛开展,但大多数AI项目缺乏成熟度无法规模化。93%的组织在使用或构建AI系统,但仅不到10%建立了强健的治理框架。研究显示,超过50%的AI实验从未投产,仅1%的项目实现真正变革性成果。缺乏数据和AI主权是关键障碍,而拥有主权的组织AI项目成功率提升2倍,回报率增长5倍。
香港中文大学等顶尖院校联合研究发现,当前最先进的AI视频生成技术已能制作出连顶级检测系统都无法识别的假视频。研究团队开发了Video Reality Test平台,测试结果显示最强生成模型Veo3.1-Fast的假视频仅有12.54%被识别,而最强检测系统Gemini 2.5-Pro准确率仅56%,远低于人类专家的81.25%。研究还发现检测系统过度依赖水印等表面特征,音频信息能提升检测准确性,但技术发展已对信息真实性判断带来严峻挑战。
企业正竞相释放AI的变革潜力,但真正的瓶颈不在技术而在人力准备度。Gartner研究显示,56%的CEO计划在未来五年削减管理层级,但91%的CIO未跟踪AI引发的技能变化。超过80%的领导者根本不衡量AI准确性。AI价值取决于员工适应和与智能机器共同发展的能力。CIO必须应对五个关键人力障碍:AI退出效应、中层管理困境、行为副产品、准确性悖论和影子AI现象,这些深层次的行为反射和组织动态如不解决将阻碍转型。
Google DeepMind团队提出了革命性的"扩散预览"模式,通过ConsistencySolver技术实现AI图像生成的"预览+精修"工作流程。该技术能在5-10步内生成高质量预览图像,与传统40步完整生成保持高度一致性,用户体验测试显示总体时间节省近50%,大大提高了创作效率和创意探索的自由度。