微软近日宣布开放Infer.NET源代码,是微软内部开发的一个机器学习引擎,用于为Azure、Office 365和Xbox视频游戏平台提供支持。
微软已经根据MIT许可(允许免费商业使用)在GitHub上的工具提供Infer.NET代码。这是微软在位于英国剑桥的研究实验室开发Infer.NET软件第一个迭代之后的近15年来,首次开源Infer.NET。
Yordan Zaykov是Infer.NET背后的团队工程负责人,他在一篇博文中详细介绍了该引擎的演变。他写道,一开始Infer.NET软件是作为一种研究工具的,被用于创建了数百篇从流行病学到森林保护等领域的学术论文。多年来,Infer.NET发展成为Zaykov编写的可扩展引擎,到现在已经可以帮助处理微软不同服务中的PB级数据。
Infer.NET引擎与许多其他开源机器学习工具不同,它旨在促进“基于模型”的方法来构建人工智能软件,从而逆转正常的开发工作流程。
使用传统的机器学习工具时,工程师通常会利用现有的一个AI算法,根据项目的要求对其进行改进。相反,Infer.NET以这些要求为出发点,让工程师能够将项目特定信息表达为模型,并使用该模型生成针对手头任务优化的、新的自定义AI算法。
这种方法使Infer.NET非常适合依赖于大量特定领域知识的项目。此外,使用该工具创建AI算法,这是直接由它们所基于的模型决定的,为其内部工作提供了急需的可见性。
微软的Zaykov在帖子中解释说:“如果你自己已经设计了模型以及遵循这个模型的学习算法,那么你就可以理解为什么系统以特定方式运行或做出某些预测。随着机器学习应用逐渐进入我们的生活,理解和解释他们的行为变得越来越重要。”
他补充说,使用Infer.NET创建的模型可以处理各种不同的数据类型,包括需要实时处理的信息,以及不完整或有缺陷的记录。
微软计划将该引擎作为自己为广泛使用的.NET开发平台创建的ML.NET框架的一部分,后者也可以在开源许可下使用。微软还提供另一个名为Microsoft Bot Framework的开源人工智能工具,旨在构建虚拟助理。
好文章,需要你的鼓励
清华大学团队突破性开发"零样本量化"技术,让AI模型在不接触真实数据的情况下完成高效压缩,性能反超传统方法1.7%,为隐私保护时代的AI部署开辟新路径。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。