微软近日宣布开放Infer.NET源代码,是微软内部开发的一个机器学习引擎,用于为Azure、Office 365和Xbox视频游戏平台提供支持。
微软已经根据MIT许可(允许免费商业使用)在GitHub上的工具提供Infer.NET代码。这是微软在位于英国剑桥的研究实验室开发Infer.NET软件第一个迭代之后的近15年来,首次开源Infer.NET。
Yordan Zaykov是Infer.NET背后的团队工程负责人,他在一篇博文中详细介绍了该引擎的演变。他写道,一开始Infer.NET软件是作为一种研究工具的,被用于创建了数百篇从流行病学到森林保护等领域的学术论文。多年来,Infer.NET发展成为Zaykov编写的可扩展引擎,到现在已经可以帮助处理微软不同服务中的PB级数据。
Infer.NET引擎与许多其他开源机器学习工具不同,它旨在促进“基于模型”的方法来构建人工智能软件,从而逆转正常的开发工作流程。
使用传统的机器学习工具时,工程师通常会利用现有的一个AI算法,根据项目的要求对其进行改进。相反,Infer.NET以这些要求为出发点,让工程师能够将项目特定信息表达为模型,并使用该模型生成针对手头任务优化的、新的自定义AI算法。
这种方法使Infer.NET非常适合依赖于大量特定领域知识的项目。此外,使用该工具创建AI算法,这是直接由它们所基于的模型决定的,为其内部工作提供了急需的可见性。
微软的Zaykov在帖子中解释说:“如果你自己已经设计了模型以及遵循这个模型的学习算法,那么你就可以理解为什么系统以特定方式运行或做出某些预测。随着机器学习应用逐渐进入我们的生活,理解和解释他们的行为变得越来越重要。”
他补充说,使用Infer.NET创建的模型可以处理各种不同的数据类型,包括需要实时处理的信息,以及不完整或有缺陷的记录。
微软计划将该引擎作为自己为广泛使用的.NET开发平台创建的ML.NET框架的一部分,后者也可以在开源许可下使用。微软还提供另一个名为Microsoft Bot Framework的开源人工智能工具,旨在构建虚拟助理。
好文章,需要你的鼓励
以色列量子初创公司Qedma完成2600万美元A轮融资,IBM参与投资。该公司专注于量子纠错软件开发,其核心产品QESEM可分析噪声模式并抑制错误,使量子电路在现有硬件上的准确运行规模扩大1000倍。IBM等硬件制造商通过与Qedma等软件公司合作,为银行量化分析师和化学家等终端用户提供更易用的量子计算解决方案。
大连理工大学和浙江大学研究团队提出MoR(Mixture of Reasoning)方法,通过将多种推理策略嵌入AI模型参数中,让AI能自主选择最适合的思考方式,无需人工设计专门提示词。该方法包含思维生成和数据集构建两阶段,实验显示MoR150模型性能显著提升,比基线模型提高2.2%-13.5%,为AI推理能力发展开辟新路径。
印尼科技巨头GoTo正在实施"务实且问题驱动"的AI战略,基于其完成的"最复杂和具有挑战性的云迁移之一"。该公司在九个月内将一半基础设施迁移至阿里云,涉及数万PB数据和9000项服务,实现零停机时间。目前GoTo使用阿里云MaxCompute大数据平台和PolarDB数据库,为其交通、电商和金融服务提供支持,并开发了自有大语言模型Sahabat AI。
剑桥大学研究团队开发了FreNBRDF技术,通过引入频率修正机制显著提升了计算机材质建模的精度。该技术采用球面谐波分析提取材质频率信息,结合自动编码器架构实现高质量材质重建与编辑。实验表明,FreNBRDF在多项指标上超越现有方法,特别在频率一致性方面改善近30倍,为游戏开发、影视制作、电商预览等领域提供了重要技术支撑。