至顶网软件频道消息: 据报道称,微软正计划让自己的Azure云基础设施芯片提供商多样化,除了目前主要的供应商英特尔之外,微软还将采用来自赛灵思(Xilinx)的高度专业化半导体技术。
微软此举正值自己强化Azure平台的人工智能和机器学习能力的时候,据称Azure平台是公有云领域最有增长前景的平台之一。
根据彭博社周二发布的一份报告称,微软已经于赛灵思达成协议,赛灵思的芯片将被近半数Azure服务用作协同处理器来处理机器学习任务。此前,此类工作负载完全由英特尔Altera部门提供的芯片承载。英特尔于2015年收购了Altera公司,并将Altera类似于赛灵思的可编程芯片添加到英特尔的CPU产品线中。
彭博社称,微软将继续从英特尔购买芯片用于其他云基础设施产品。微软发言人表示:“现有基础设施产品的采购没有变化。”
不过据称,微软将谨慎对待这家新的供应商,正如彭博社此前的报道,赛灵思的芯片需要在更广泛部署之前达到性能目标。
赛灵思的FPGA等灵活芯片正在日益普及,这些用于数据中心的芯片可以实时重新编程以用于不同的计算任务。像微软这样的云提供商越来越依赖这种芯片,而且这种芯片相比标准CPU来说可以更快速地处理AI工作负载。赛灵思的FPGA实际上从20世纪80年代后期就推出了,但随着AI的出现市场范围才得到了逐渐的扩大。
上个月,赛灵思宣布推出专为AI推理设计的新型计算机芯片,该芯片涉及深度学习模型在消费者和云环境中的应用。据称,这款名为Versal的新芯片将FPGA与两个更高性能的Arm处理器相结合,再加上一个专用的AI计算引擎,与现有硬件相比,可以实现更高的吞吐量、更低的延迟和更高的功效。
有分析师表示,赛灵思推出这款Versal芯片是将矛头对准了Nvidia及其已经成为AI工作负载标准的GPU。无论如何,微软此时不太可能使用这些产品,因为赛灵思称Versal芯片要到2019年夏天才会发布。
好文章,需要你的鼓励
工业升级的关键,或许在于智能本身。“工业+机器人”将成为通向下一阶段工业体系的核心抓手。——黄仁勋。
浙江大学等联合研究发现,AI强化学习效果取决于"模型-任务对齐"程度。当AI擅长某任务时,单样本训练、错误奖励等非常规方法也有效;但面对陌生任务时,这些方法失效,只有标准训练有用。研究团队通过大量实验证实,这种"舒适圈"现象比数据污染更能解释训练差异,为AI训练策略优化提供了新思路。
瑞士政府正式发布了自主研发的人工智能模型,该模型完全基于公共数据进行训练。这一举措标志着瑞士在AI技术自主化方面迈出重要一步,旨在减少对外国AI技术的依赖,同时确保数据安全和隐私保护。该模型的推出体现了瑞士对发展本土AI能力的战略重视。
巴赫切希尔大学研究团队通过对五种不同规模YOLO模型的量化鲁棒性测试发现,静态INT8量化虽能带来1.5-3.3倍速度提升,但会显著降低模型对噪音等图像损伤的抵抗能力。他们提出的混合校准策略仅在大型模型处理噪音时有限改善,揭示了效率与鲁棒性平衡的复杂挑战。