Facebook开源了人工智能软件另一个重要的组成部分,旨在帮助开发者在其软件应用中构建“强化学习模型”。
从今天开始,开发者可以使用Facebook的Horizon软件工具包来构建可以通过反复试验和试错以学习执行特定计算任务的应用。
Facebook此前一直使用Horizon来执行很多任务,包括训练其系统以预测用户最有可能对哪些通知做出响应。例如,Horizon帮助Facebook了解某个用户更有对于他母亲的点赞做出回应,而不是在同一个帖子上互动的其他几十个人。因此,就会突出显示“妈妈”之类的内容,以便让用户做出反应。
Horizon还用于支持Facebook Messenger应用中的虚拟助理M为用户提供个性化建议。
强化学习是AI的一个子集,涉及到使用模拟环境来训练计算机程序执行特定任务。例如,Facebook还使用强化学习来决定向用户传输高清还是非高清的视频,具体取决于蜂窝连接强度甚至是位置等因素。因此,如果特定用户在地铁上信号较弱时,它可能就会发送占用带宽较低的视频。
Facebook并不是唯一一家使用强化学习的公司。作为Facebook在人工智能领域的主要竞争对手之一,Google也在使用强化学习技术来训练计算机玩中国围棋游戏,而无需人工输入。Google的AlphaGo后来在五场系列比赛中击败了现围棋世界冠军李世石。
Facebook工程师Jason Gauci、Edoardo Conti和Kittipat Virochsiri在一篇博客文章中解释说,通过强化学习,计算机可以根据其行为的结果获得奖励或惩罚。因此,就Facebook向用户发送通知这件事来说,每当发送给用户的通知得到了响应的时候,工程师都给予系统奖励。
但是,当通知未能引起用户响应的时候,系统会受到惩罚。随着时间的推移,系统 来说都是一项艰巨的任务,Constellation Research首席分析师兼副总裁Holger Mueller这样表示。他认为,此举将有助于推动采用和获得更多的关注,不过仍然存在很多挑战,因为Horizon是运行在Facebook的PyTorch机器学习框架上,而该框架正在努力跟上谷歌更受欢迎的TensorFlow的发展步伐。
Mueller说:“而且由于该平台没有这些专用的、特有的硬件,所以也引发了有关实施成本和总体拥有成本的问题。企业必须快速构建应用,因此他们倾向于选择集成的产品。尽管如此,这仍然是一个很好的举措,Facebook可以从PyTorch平台中实现更多用途、价值和差异化。”
Facebook称,Horizon是首个公开可用的强化学习软件,目前用户已经可以通过GitHub进行下载。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。