Cloudera今天宣布预览了一个新的云原生机器学习平台,该平台运行在Kubernetes软件容器编排平台上。
容器是可移植的、自包含的软件环境,包括了代码和所有依存关系,让应用能够可靠地运行在多个计算环境中。
Cloudera表示,这个新推出的Cloudera Machine Learning平台将在异构计算环境中提供快速配置、自动扩展以及容器化分布式处理功能,旨在将安全数据访问与跨内部部署、公有云、混合环境中的统一体验相结合。安全数据访问覆盖Hadoop的HDFS文件系统、云对象存储和外部数据库。
此举代表着Cloudera正在逐渐摆脱对Hadoop大数据平台的依赖。随着Hadoop成为云中的一种商用服务,Cloudera已经开始向价值链上端移动,把机器学习作为自己的核心竞争力。
Cloudera表示,企业越来越需要将机器学习作为日常运营的一部分。Cloudera Machine Learing旨在帮助这些企业组织降低机器学习开发的门槛,让用户能够配置他们自己的环境而尽量减少IT部门人员的负担。
该软件扩展了本地Cloudera Data Science Workbench的工作流程元素,具有类似云的功能,如自动缩放、分布式依赖隔离以及分布式GPU训练,可以使用标准的Kubernetes工具安装到任何受支持的Kubernetes环境中,也就意味着它不依赖于主机处理器。依赖管理由容器化的Python、R和Apache Spark-on-Kubernetes库提供。
该产品最初针对的是那些希望使用公有云存储服务的企业组织,以及那些现有云管理Kubernetes环境的客户。Cloudera表示,计划未来将该产品作为托管服务提供给客户。Cloudera的Data Science Workbench将仍然是内部部署的首选平台。
Cloudera未公布定价,预计该产品明年上市。企业现在可以注册进行预览。
好文章,需要你的鼓励
受中国各智能手机品牌坚持低库存战略的影响,智能手机NAND闪存产品面临订单减少,且合同价格与上季度基本持平。与此同时,由于零售市场需求疲软,闪存晶圆的合同价格也开始逆转进入下行。
12月5日,IEEE Tech Frontiers论坛举办,囊括IEEE PES T&D、PVSC、CVP三大会议精华。
年初时,整个存储行业依然处于低迷期,但随着AI需求的迅猛上升,存储需求也随之激增,推动了行业的快速复苏与发展。这一波技术创新与市场需求的双重浪潮,给Solidigm带来了前所未有的机遇,也考验着其应对行业变革的能力。
艾斯本不断推陈出新,依托丰富的行业经验,推出了包括绩效工程、制造与供应链、资产绩效管理、地下科学与工程、数字电网管理和工业数据结构在内的六大解决方案。更值得一提的是艾斯本提出的“工业AI”理念,正以有型的投资回报率,推动客户实现价值跃升。