Cloudera今天宣布预览了一个新的云原生机器学习平台,该平台运行在Kubernetes软件容器编排平台上。
容器是可移植的、自包含的软件环境,包括了代码和所有依存关系,让应用能够可靠地运行在多个计算环境中。
Cloudera表示,这个新推出的Cloudera Machine Learning平台将在异构计算环境中提供快速配置、自动扩展以及容器化分布式处理功能,旨在将安全数据访问与跨内部部署、公有云、混合环境中的统一体验相结合。安全数据访问覆盖Hadoop的HDFS文件系统、云对象存储和外部数据库。
此举代表着Cloudera正在逐渐摆脱对Hadoop大数据平台的依赖。随着Hadoop成为云中的一种商用服务,Cloudera已经开始向价值链上端移动,把机器学习作为自己的核心竞争力。
Cloudera表示,企业越来越需要将机器学习作为日常运营的一部分。Cloudera Machine Learing旨在帮助这些企业组织降低机器学习开发的门槛,让用户能够配置他们自己的环境而尽量减少IT部门人员的负担。
该软件扩展了本地Cloudera Data Science Workbench的工作流程元素,具有类似云的功能,如自动缩放、分布式依赖隔离以及分布式GPU训练,可以使用标准的Kubernetes工具安装到任何受支持的Kubernetes环境中,也就意味着它不依赖于主机处理器。依赖管理由容器化的Python、R和Apache Spark-on-Kubernetes库提供。
该产品最初针对的是那些希望使用公有云存储服务的企业组织,以及那些现有云管理Kubernetes环境的客户。Cloudera表示,计划未来将该产品作为托管服务提供给客户。Cloudera的Data Science Workbench将仍然是内部部署的首选平台。
Cloudera未公布定价,预计该产品明年上市。企业现在可以注册进行预览。
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。