Cloudera今天宣布预览了一个新的云原生机器学习平台,该平台运行在Kubernetes软件容器编排平台上。
容器是可移植的、自包含的软件环境,包括了代码和所有依存关系,让应用能够可靠地运行在多个计算环境中。
Cloudera表示,这个新推出的Cloudera Machine Learning平台将在异构计算环境中提供快速配置、自动扩展以及容器化分布式处理功能,旨在将安全数据访问与跨内部部署、公有云、混合环境中的统一体验相结合。安全数据访问覆盖Hadoop的HDFS文件系统、云对象存储和外部数据库。
此举代表着Cloudera正在逐渐摆脱对Hadoop大数据平台的依赖。随着Hadoop成为云中的一种商用服务,Cloudera已经开始向价值链上端移动,把机器学习作为自己的核心竞争力。
Cloudera表示,企业越来越需要将机器学习作为日常运营的一部分。Cloudera Machine Learing旨在帮助这些企业组织降低机器学习开发的门槛,让用户能够配置他们自己的环境而尽量减少IT部门人员的负担。
该软件扩展了本地Cloudera Data Science Workbench的工作流程元素,具有类似云的功能,如自动缩放、分布式依赖隔离以及分布式GPU训练,可以使用标准的Kubernetes工具安装到任何受支持的Kubernetes环境中,也就意味着它不依赖于主机处理器。依赖管理由容器化的Python、R和Apache Spark-on-Kubernetes库提供。
该产品最初针对的是那些希望使用公有云存储服务的企业组织,以及那些现有云管理Kubernetes环境的客户。Cloudera表示,计划未来将该产品作为托管服务提供给客户。Cloudera的Data Science Workbench将仍然是内部部署的首选平台。
Cloudera未公布定价,预计该产品明年上市。企业现在可以注册进行预览。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
香港理工大学联合多所高校开发的Mol-R1框架,首次实现了AI在分子发现中的透明推理。该系统通过PRID方法学习专家推理模式,配合MoIA迭代训练策略,不仅能准确生成分子结构,还能展示完整思考过程。相比现有模型,Mol-R1推理更简洁高效,为药物研发等领域的AI应用提供了重要的安全保障。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
蚂蚁集团AWorld团队发表突破性研究,创建动态多智能体协作系统解决AI稳定性难题。研究灵感来源于船舶导航,通过执行智能体和守护智能体的协作机制,在GAIA测试中准确率达67.89%,稳定性提升17.3%,荣登开源项目排行榜第一名。该系统为构建可靠智能系统开辟新路径,具有广阔应用前景。