Cloudera今天宣布预览了一个新的云原生机器学习平台,该平台运行在Kubernetes软件容器编排平台上。
容器是可移植的、自包含的软件环境,包括了代码和所有依存关系,让应用能够可靠地运行在多个计算环境中。
Cloudera表示,这个新推出的Cloudera Machine Learning平台将在异构计算环境中提供快速配置、自动扩展以及容器化分布式处理功能,旨在将安全数据访问与跨内部部署、公有云、混合环境中的统一体验相结合。安全数据访问覆盖Hadoop的HDFS文件系统、云对象存储和外部数据库。
此举代表着Cloudera正在逐渐摆脱对Hadoop大数据平台的依赖。随着Hadoop成为云中的一种商用服务,Cloudera已经开始向价值链上端移动,把机器学习作为自己的核心竞争力。
Cloudera表示,企业越来越需要将机器学习作为日常运营的一部分。Cloudera Machine Learing旨在帮助这些企业组织降低机器学习开发的门槛,让用户能够配置他们自己的环境而尽量减少IT部门人员的负担。
该软件扩展了本地Cloudera Data Science Workbench的工作流程元素,具有类似云的功能,如自动缩放、分布式依赖隔离以及分布式GPU训练,可以使用标准的Kubernetes工具安装到任何受支持的Kubernetes环境中,也就意味着它不依赖于主机处理器。依赖管理由容器化的Python、R和Apache Spark-on-Kubernetes库提供。
该产品最初针对的是那些希望使用公有云存储服务的企业组织,以及那些现有云管理Kubernetes环境的客户。Cloudera表示,计划未来将该产品作为托管服务提供给客户。Cloudera的Data Science Workbench将仍然是内部部署的首选平台。
Cloudera未公布定价,预计该产品明年上市。企业现在可以注册进行预览。
好文章,需要你的鼓励
OpenAI明确表示要成为互联网一切事物的主导界面。AI智能体正在改变用户的数字习惯,从健康记录分析到购物指导,ChatGPT已经在多个领域扩展影响力。用户快速采用AI工具,但企业和生态系统的适应速度滞后。电商领域的权力分配尚不明确,用户偏好AI驱动的答案优先体验,品牌则推动生成式引擎优化。研究旨在了解用户与企业在AI变革中的适应差异。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。