随着公有云提供商们争相成为客户人工智能项目的首选,IBM也决定将自己的Watson技术从自己的防火墙后端带向前端。
今天在旧金山举行的IBM Think 2019大会上,IBM宣布Watson现在可作为一项运行在任何云以及客户数据中心内部的便携式技术提供给客户。
IBM数据和人工智能业务总经理Rob Thomas表示:“数据如此分散,如果你必须通过移动数据来运行每个分析项目的话,那就太浪费了。我们的观点是要将AI带到数据所在的任何位置。”
Watson将不会原生运行在AWS和微软Azure等平台上。相反,客户需要在目标环境和Watson上安装IBM Cloud Private for Data容器管理平台。只要客户持有Watson许可,就可以将实例移动到他们喜欢的任何云端。
IBM Cloud Private for Data是IBM多云战略的一个组成部分,该战略的核心是为客户提供选择云平台的透明性。这是管理容器的单一环境,容器则是包含应用运行所需的所有元素的虚拟机。Cloud Private for Data将Kubernetes容器编排管理器与私有映像注册表、管理控制台和监视框架结合到一起。
克服复杂性
虽然目前有80%的企业使用或计划采用多云环境,但管理和保护数据的复杂性往往会随着他们使用云的数量而呈现几何增加趋势。与许多未能达到公有云巨头量级的企业一样,IBM采用了另一种策略,即通过将数据保留在原有位置,而不是强制进行大量数据传输,使客户更容易来回切换工作负载。现在IBM仍然持续销售它自己的公有云服务。
借助这种新的便携特性,客户可以在任何云和本地运行Watson服务,包括Watson Studio开发环境、Watson Assistant虚拟助手、Watson OpenScale AI管理框架。IBM表示,便携性是通过一系列为IBM Cloud Private for Data构建的新微服务实现的,这些微服务可以在云环境中移动和扩展。这些微服务通过Kubernetes可以在任何公有云、混合云或者多云环境中运行。
防止锁定
尽管客户必须留在Watson框架,但IBM仍将此举定位为可以帮助可以防止锁定。作为商业AI产品市场的早期进入者,IBM为Watson开发了很多自有技术,这种策略因限制客户的选择而受到批评。
一年前研究公司Wikibon评论说,像IBM Watson这样的大型集成项目“会发现随着他们的最佳AI工具在开源社区中迅速复制而逐渐被淘汰”。
但Thomas表示,Watson支持各种开源工具。“在Watson内部的工作中有85%是基于开源的,例如Python、R和Tensorflow。我们不支持所有10000种开源工具,但我们支持任何主流的技术。”
最初Watson是一个专注于自然语言理解和信息检索的问答引擎,但IBM已经逐步将Watson扩展到更主流的机器学习应用中,并将其定位为开发平台而非黑盒解决方案。
此外,IBM今天还宣布推出了业务流程管理套件的增强功能,将智能建议融入到现有流程自动化中。Thomas用保险承保流程举例说,该流程可以通过结合机器学习算法提高效率,算法会建议改进工作流程,而不是简单的自动化。
他说:“改善的最大障碍之一是因为漏报没有得到理赔公司的通过。当你将大量数据输入该流程的时候,你就可以更加主动地了解审批的内容。”
Watson集成将在今年晚些时候推出,IBM没有提供进一步的细节。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。