随着公有云提供商们争相成为客户人工智能项目的首选,IBM也决定将自己的Watson技术从自己的防火墙后端带向前端。
今天在旧金山举行的IBM Think 2019大会上,IBM宣布Watson现在可作为一项运行在任何云以及客户数据中心内部的便携式技术提供给客户。
IBM数据和人工智能业务总经理Rob Thomas表示:“数据如此分散,如果你必须通过移动数据来运行每个分析项目的话,那就太浪费了。我们的观点是要将AI带到数据所在的任何位置。”
Watson将不会原生运行在AWS和微软Azure等平台上。相反,客户需要在目标环境和Watson上安装IBM Cloud Private for Data容器管理平台。只要客户持有Watson许可,就可以将实例移动到他们喜欢的任何云端。
IBM Cloud Private for Data是IBM多云战略的一个组成部分,该战略的核心是为客户提供选择云平台的透明性。这是管理容器的单一环境,容器则是包含应用运行所需的所有元素的虚拟机。Cloud Private for Data将Kubernetes容器编排管理器与私有映像注册表、管理控制台和监视框架结合到一起。
克服复杂性
虽然目前有80%的企业使用或计划采用多云环境,但管理和保护数据的复杂性往往会随着他们使用云的数量而呈现几何增加趋势。与许多未能达到公有云巨头量级的企业一样,IBM采用了另一种策略,即通过将数据保留在原有位置,而不是强制进行大量数据传输,使客户更容易来回切换工作负载。现在IBM仍然持续销售它自己的公有云服务。
借助这种新的便携特性,客户可以在任何云和本地运行Watson服务,包括Watson Studio开发环境、Watson Assistant虚拟助手、Watson OpenScale AI管理框架。IBM表示,便携性是通过一系列为IBM Cloud Private for Data构建的新微服务实现的,这些微服务可以在云环境中移动和扩展。这些微服务通过Kubernetes可以在任何公有云、混合云或者多云环境中运行。
防止锁定
尽管客户必须留在Watson框架,但IBM仍将此举定位为可以帮助可以防止锁定。作为商业AI产品市场的早期进入者,IBM为Watson开发了很多自有技术,这种策略因限制客户的选择而受到批评。
一年前研究公司Wikibon评论说,像IBM Watson这样的大型集成项目“会发现随着他们的最佳AI工具在开源社区中迅速复制而逐渐被淘汰”。
但Thomas表示,Watson支持各种开源工具。“在Watson内部的工作中有85%是基于开源的,例如Python、R和Tensorflow。我们不支持所有10000种开源工具,但我们支持任何主流的技术。”
最初Watson是一个专注于自然语言理解和信息检索的问答引擎,但IBM已经逐步将Watson扩展到更主流的机器学习应用中,并将其定位为开发平台而非黑盒解决方案。
此外,IBM今天还宣布推出了业务流程管理套件的增强功能,将智能建议融入到现有流程自动化中。Thomas用保险承保流程举例说,该流程可以通过结合机器学习算法提高效率,算法会建议改进工作流程,而不是简单的自动化。
他说:“改善的最大障碍之一是因为漏报没有得到理赔公司的通过。当你将大量数据输入该流程的时候,你就可以更加主动地了解审批的内容。”
Watson集成将在今年晚些时候推出,IBM没有提供进一步的细节。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。