IBM本周在美国旧金山举行的IBM Think技术大会吸引了近30000名参会者,周二中午所有参会者都走进会议大厅,IBM首席执行官罗睿兰(Ginni Rometty)将在这里做重要的主题演讲。
Rometty走上舞台后立即宣布:“这是我感觉最像发布iPhone的一次大会。”这句话引起了大厅内所有参与者的热烈欢笑,他们知道,IBM的营销力度和苹果不是一个层面上的,但这也传达了一个恰当的信息。IBM的大会可能无法热烈到像苹果发布会那样引发混乱的局面,但从另一方面来看,很明显IBM所代表的企业计算正在云时代变得越来越重要。
Rometty 说:“我们都站在数字化重构第二阶段的开始。我认为第二阶段将是企业驱动的。”
对于IBM来说,这项重构开始于去年10月IBM收购开源软件和技术公司Red Hat付出的340亿美元。一些观察人士认为,IBM系统借助这次收购通过合作伙伴关系在多云世界站稳脚跟,但是关于两家公司如何整合投资组合以及未来进展的详细信息还是很粗略的。上个月,股东为这次收购放行,但交易可能要到今年下半年才会正式完成。
Rometty在Red Hat首席执行官Jim Whitehurst主题演讲中登台,两人在对话中透露了一些信息,但没有做任何重大的公布。
Red Hat在开源世界举足轻重,用于处理和传输边缘数据的工具都是由开源生态系统开发的。因此,IBM可以充分利用向边缘计算的发展和在容器领域的增长机会。
Whitehurst在他简短的对话中谈到了这一潜力,谈到了Linux和容器化服务的兴起。“这将酝酿大量的创新,双方可以共同做的事情非常令人兴奋。”
他相信,有Red Hat开源工具驱动的技术,将为未来企业计算提供巨大的潜力。“真正的价值在于你拥有的数据和流程可以利用这一整套技术。我们努力做的,是为企业提供开放式的创新消费品。”
Rometty没有透露太多关于IBM整合Red Hat业务的计划,但她谈到了很多关于人工智能的话题。就在Think大会的前两天,IBM刚刚发布了几个与人工智能相关的公告,其中最重要的是Watson现在任何云上都可供使用了。
“这是我们对于你关于数据反馈的回应,”这里Rometty指的是客户关于需要不同云平台之间移动信息的灵活性的反馈。“这将成为全球业务中最开放、最具扩展性的人工智能。”
上周,IBM还宣布计划开设一个致力于开发下一代人工智能硬件的研究中心。
她说:“我们正在努力的最重要的一件事,就是如何让人工智能以更少的数据进行学习,”她还暗示说接下来还会有更多与研究相关的人工智能新进展公布。
Rometty还阐述了她对人工智能行业的总体看法。除了IBM正在进行中的人工智能工具改进核心研究之外,IBM还专注于Rometty所描述的“可信人工智能”和“可扩展人工智能”。
考虑到人工智能领域最近因为用户数据丢失和滥用而受到的冲击,IBM推出了一项软件服务,用于扫描使用人工智能进行偏差检测的系统。
IBM本周还宣布将把PowerAI服务器产品线与Watson合并,以加速机器学习训练。IBM宣布通过这一举措实现了46倍的加速,但IBM有更大的未来发展计划。
Rometty说:“这是用AI来自动化AI,我们的目标是让AI的效率提高一千倍。”
新AI工具的推出以及Red Hat开源技术重塑企业的承诺,标志着IBM有望成为未来几年企业计算领域的一个重要参与者。
但这也要面对诸多挑战,不仅仅是来自AWS和微软等巨头的竞争。很多企业仍然在努力应对云计算的复杂性,而Rometty正是把IBM的未来押注在这一点上。Kaiser Permanente公司董事长兼首席执行官Bernard Tyson本周二在与Rometty的对话中说:“我觉得我现在对云非常了解,但仍然有我不太明白的地方。”
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。