IBM本周在美国旧金山举行的IBM Think技术大会吸引了近30000名参会者,周二中午所有参会者都走进会议大厅,IBM首席执行官罗睿兰(Ginni Rometty)将在这里做重要的主题演讲。
Rometty走上舞台后立即宣布:“这是我感觉最像发布iPhone的一次大会。”这句话引起了大厅内所有参与者的热烈欢笑,他们知道,IBM的营销力度和苹果不是一个层面上的,但这也传达了一个恰当的信息。IBM的大会可能无法热烈到像苹果发布会那样引发混乱的局面,但从另一方面来看,很明显IBM所代表的企业计算正在云时代变得越来越重要。
Rometty 说:“我们都站在数字化重构第二阶段的开始。我认为第二阶段将是企业驱动的。”
对于IBM来说,这项重构开始于去年10月IBM收购开源软件和技术公司Red Hat付出的340亿美元。一些观察人士认为,IBM系统借助这次收购通过合作伙伴关系在多云世界站稳脚跟,但是关于两家公司如何整合投资组合以及未来进展的详细信息还是很粗略的。上个月,股东为这次收购放行,但交易可能要到今年下半年才会正式完成。
Rometty在Red Hat首席执行官Jim Whitehurst主题演讲中登台,两人在对话中透露了一些信息,但没有做任何重大的公布。
Red Hat在开源世界举足轻重,用于处理和传输边缘数据的工具都是由开源生态系统开发的。因此,IBM可以充分利用向边缘计算的发展和在容器领域的增长机会。
Whitehurst在他简短的对话中谈到了这一潜力,谈到了Linux和容器化服务的兴起。“这将酝酿大量的创新,双方可以共同做的事情非常令人兴奋。”
他相信,有Red Hat开源工具驱动的技术,将为未来企业计算提供巨大的潜力。“真正的价值在于你拥有的数据和流程可以利用这一整套技术。我们努力做的,是为企业提供开放式的创新消费品。”
Rometty没有透露太多关于IBM整合Red Hat业务的计划,但她谈到了很多关于人工智能的话题。就在Think大会的前两天,IBM刚刚发布了几个与人工智能相关的公告,其中最重要的是Watson现在任何云上都可供使用了。
“这是我们对于你关于数据反馈的回应,”这里Rometty指的是客户关于需要不同云平台之间移动信息的灵活性的反馈。“这将成为全球业务中最开放、最具扩展性的人工智能。”
上周,IBM还宣布计划开设一个致力于开发下一代人工智能硬件的研究中心。
她说:“我们正在努力的最重要的一件事,就是如何让人工智能以更少的数据进行学习,”她还暗示说接下来还会有更多与研究相关的人工智能新进展公布。
Rometty还阐述了她对人工智能行业的总体看法。除了IBM正在进行中的人工智能工具改进核心研究之外,IBM还专注于Rometty所描述的“可信人工智能”和“可扩展人工智能”。
考虑到人工智能领域最近因为用户数据丢失和滥用而受到的冲击,IBM推出了一项软件服务,用于扫描使用人工智能进行偏差检测的系统。
IBM本周还宣布将把PowerAI服务器产品线与Watson合并,以加速机器学习训练。IBM宣布通过这一举措实现了46倍的加速,但IBM有更大的未来发展计划。
Rometty说:“这是用AI来自动化AI,我们的目标是让AI的效率提高一千倍。”
新AI工具的推出以及Red Hat开源技术重塑企业的承诺,标志着IBM有望成为未来几年企业计算领域的一个重要参与者。
但这也要面对诸多挑战,不仅仅是来自AWS和微软等巨头的竞争。很多企业仍然在努力应对云计算的复杂性,而Rometty正是把IBM的未来押注在这一点上。Kaiser Permanente公司董事长兼首席执行官Bernard Tyson本周二在与Rometty的对话中说:“我觉得我现在对云非常了解,但仍然有我不太明白的地方。”
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。