IBM Watson Health周三宣布加大由麻省理工学院和哈佛大学起头的研究中心的合作关系并启动可以帮助临床医生预测心血管疾病的算法模型的合作项目。该项目将利用基因组数据与临床数据(包括现有的健康记录和患者的生物标记物)的结合得到更可靠的多基因评分,多基因评分亦称遗传风险评分。
在未来的三年时间里,该项目的研究人员将研究算法的构建,达到能识别某些特定健康状况的目的,例如心脏骤停和心房颤动。研究人员将开发可以整合各种数据进行建模的工具并能够将得到的模型应用于来自不同卫生系统的患者。到最后,研究人员需要确保项目得到的有关结果能够以言简意赅的方式解释给医生和患者听。
IBM表示,项目的研究结果和工具将分享给更多的研究团体。
IBM和Broad Institute一直在该领域有合作。两家早在2016年就开始了一个为期五年、5000万美元的项目,项目的目的是利用机器学习和基因组学更好地了解为什么癌症会对治疗产生抵抗力
IBM Watson Health周三还宣布了将与Vanderbilt大学的医学中心和Brigham妇科医院(隶属哈佛医学院的教学医院)开展一项为期10年、投资达5000万美元的联合研究合作项目。合作的重点将放在重大公共卫生领域的人工智能应用上,最初的重点是利用自然语言处理更好地使用电子健康记录。
IBM还宣布,Cigna和Sentara Healthcare两家医疗保健组织日前加入了IBM上个月建立的区块链健康网络。该健康网络是由IBM与Aetna、Anthem、Health Care Service Corporation和PNC Bank合作建立的,目标是改善医疗保健行业的互操作性。
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。