IBM Watson Health周三宣布加大由麻省理工学院和哈佛大学起头的研究中心的合作关系并启动可以帮助临床医生预测心血管疾病的算法模型的合作项目。该项目将利用基因组数据与临床数据(包括现有的健康记录和患者的生物标记物)的结合得到更可靠的多基因评分,多基因评分亦称遗传风险评分。
在未来的三年时间里,该项目的研究人员将研究算法的构建,达到能识别某些特定健康状况的目的,例如心脏骤停和心房颤动。研究人员将开发可以整合各种数据进行建模的工具并能够将得到的模型应用于来自不同卫生系统的患者。到最后,研究人员需要确保项目得到的有关结果能够以言简意赅的方式解释给医生和患者听。
IBM表示,项目的研究结果和工具将分享给更多的研究团体。
IBM和Broad Institute一直在该领域有合作。两家早在2016年就开始了一个为期五年、5000万美元的项目,项目的目的是利用机器学习和基因组学更好地了解为什么癌症会对治疗产生抵抗力
IBM Watson Health周三还宣布了将与Vanderbilt大学的医学中心和Brigham妇科医院(隶属哈佛医学院的教学医院)开展一项为期10年、投资达5000万美元的联合研究合作项目。合作的重点将放在重大公共卫生领域的人工智能应用上,最初的重点是利用自然语言处理更好地使用电子健康记录。
IBM还宣布,Cigna和Sentara Healthcare两家医疗保健组织日前加入了IBM上个月建立的区块链健康网络。该健康网络是由IBM与Aetna、Anthem、Health Care Service Corporation和PNC Bank合作建立的,目标是改善医疗保健行业的互操作性。
好文章,需要你的鼓励
Liquid AI发布了新一代视觉语言基础模型LFM2-VL,专为智能手机、笔记本电脑和嵌入式系统等设备高效部署而设计。该模型基于独特的LIV系统架构,GPU推理速度比同类模型快2倍,同时保持竞争性能。提供450M和1.6B两个版本,支持512×512原生分辨率图像处理,采用模块化架构结合语言模型和视觉编码器。模型已在Hugging Face平台开源发布。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。