时下流行的人工智能概念,是要么它取代你的工作,要么成为你新的电子助理。假设人工智能就是关于你和我。
AI带来的哪些影响最明显,对此我们有不同的看法。我们认为,最终人工智能将不可避免地主要与其他人工智能互动。
以美国的911市政系统为例。人们很难想象911呼叫是由NLP训练的聊天机器人应答的。如果接受这种做法,那是因为人们期望一个更客观、更一致、更高效的系统。如果不接受,那是因为人们不相信软件是可信的,特别是在生死攸关的情况下。
但是,在高度紧张和不可预测的人类情境中,使用一种算法来解读人类语音,这对于机器学习来说是一个重要的延伸。我们距离能够把机器人放在人类911接线员的前端还有很长一段路要走,更不要说完全取代人类了。
另一方面,有一种方法可以将人工智能纳入911,我们发现这种方法可能最终价值更高:
你在遇到紧急情况下拨打911,AI会监听你与运营商之间的对话。通过监听少数接线员数小时的对话,AI就能理解呼叫内容的性质和紧迫性。AI掌握了与整个应急管理生态系统其他要素相关的术语,它与生态系统其他部分的AI相连接,以提醒他们应对这一紧急情况并协同响应。
救护车派遣型AI的任务是确定最合适的专业团队。交通控制型AI主要是协调停车灯周期为救护车提速。ER型AI是为了确保合适的人员、药品和设备准备就绪。救护车上的AI为EMS人员提供诊断可能性和治疗选择方面的指导。
你可能会说,这不可能。这种部门之间的协调和整合是无法实现的,政治和体制障碍太多了。
如果是由人类来决定未来911系统的发展,那么你可能是对的。但事实是,我们相信人工智能会让这些在未来变成现实。
那你可能会问了,怎么实现?因为基于机器学习的系统将不可避免地演变为精细的自我纠正和自我训练的实体。数据科学团队推出了算法的早期版本(这个版本最终将成为他们的第一个指令),以便更加自信地应对更多边缘情况,而这第一条指令将推动算法发现这其中的差距,并自己主动填补这些差距。
当人类遇见其他人类的时候,具有本能的AIP会管理人类之前的互动。
人类决定彼此的身份:你是谁?
他们建立了可信度:我怎么知道你说的是真的?
他们评估彼此的价值:我是否优先考虑你提供给我的东西?
AI需要类似的API。与人类一样,寻求自我完善的人工智能将需要询问其他“监管者”并与之进行协商。
身份:这位监管者是谁?它有什么经验?
信任:我为什么要相信它们?我对它们给出的意见有多信任?
价值:我有多么需要这些数据?根据我的预算,最大限度的影响力有多大?
这种新型API——在这种机制下,软件能够通过查询和协商——来自何处?
这些已经被作为机器学习发展演进的一个组成部分。Alegion自己训练的数据平台使用这种早期的API来激励主动学习,我们肯定并不孤单。
但算法本身将变革这种新的API,以满足他们对自我改进和更大信心永不满足的需求。
正是这种可以询问和协商的AI将实现未来的911系统。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。