有大量证据表明,企业正在大规模地迁移到云端,但同时,有一部分关键数据让我们正确看待向云的转型。Google Cloud首席执行官Thomas Kurian援引统计数据称,80%的工作负载仍然是在本地的。
这就是Google Cloud在近日举行的Cloud Next大会上推出Anthos的原因之一。该平台设计旨在本地环境或者公有云中运行应用。
加州大学伯克利分校教授、Google研究员、Google Cloud基础设施副总裁Eric Brewer表示:“你可以迁移到云端,然后对其进行现代化改造,但是在本地环境中做现代化改造、在安全的可控环境中进行重写也是完全没有问题的。同时提供这两种选择,是Anthos的一个重大变化。”
向云端转型
有些企业希望尽快迁移到云端,但由于他们已经在数据中心上进行了大量投资,以及监管问题或者太大而无法轻易迁移的工作负载,使得他们无法在短期内实现这一目标。Brewer表示,Google的大多数客户都表示他们希望迁移到云。
Brewer说:“他们开始使用我们非常擅长使用的框架。如果他们开始使用Kubernetes和容器,我希望我们有机会和他们展开合作。我相信我们有更好的机会成为他们未来的云。”
Anthos明显带有开源的风格。Anthos平台是基于Kubernetes、Istio和Knative等开源技术构建的。
Brewer解释到:“我们在开源方面有坚实的基础,比其他厂商做的更加深入。”他指出,Google通过引入Kubernetes和TensorFlow做出了重大贡献。“这是我们解决这个问题的一种方式,尤其是对于混合云和多云环境来说。在我看来,除了开源之外,没有别的方法可以做多云,因为这个空间发展速度太快了。”
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。