有大量证据表明,企业正在大规模地迁移到云端,但同时,有一部分关键数据让我们正确看待向云的转型。Google Cloud首席执行官Thomas Kurian援引统计数据称,80%的工作负载仍然是在本地的。
这就是Google Cloud在近日举行的Cloud Next大会上推出Anthos的原因之一。该平台设计旨在本地环境或者公有云中运行应用。
加州大学伯克利分校教授、Google研究员、Google Cloud基础设施副总裁Eric Brewer表示:“你可以迁移到云端,然后对其进行现代化改造,但是在本地环境中做现代化改造、在安全的可控环境中进行重写也是完全没有问题的。同时提供这两种选择,是Anthos的一个重大变化。”
向云端转型
有些企业希望尽快迁移到云端,但由于他们已经在数据中心上进行了大量投资,以及监管问题或者太大而无法轻易迁移的工作负载,使得他们无法在短期内实现这一目标。Brewer表示,Google的大多数客户都表示他们希望迁移到云。
Brewer说:“他们开始使用我们非常擅长使用的框架。如果他们开始使用Kubernetes和容器,我希望我们有机会和他们展开合作。我相信我们有更好的机会成为他们未来的云。”
Anthos明显带有开源的风格。Anthos平台是基于Kubernetes、Istio和Knative等开源技术构建的。
Brewer解释到:“我们在开源方面有坚实的基础,比其他厂商做的更加深入。”他指出,Google通过引入Kubernetes和TensorFlow做出了重大贡献。“这是我们解决这个问题的一种方式,尤其是对于混合云和多云环境来说。在我看来,除了开源之外,没有别的方法可以做多云,因为这个空间发展速度太快了。”
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。