至顶网软件频道消息: 大数据公司Databricks希望通过一个全新的开源项目来清理企业凌乱的数据湖。
Databricks表示,这个名为“Delta Lake”的项目有点类似于常规的数据湖,但通过确保所有存储信息是“干净的”且没有错误的,以提供更高的可靠性。
数据湖是以自然格式(通常是对象“blobs”或者文件)存储数据的系统或存储库。数据湖通常被作为所有企业数据的单一存储库,包括源系统数据的原始副本,和用于报告、可视化、分析和机器学习等任务的转换数据。
Databricks表示,由于多种原因,存储在传统数据湖中的信息可能是不可靠或者不准确的,这会导致写入失败、模式不匹配和数据不一致等问题,而且会在批量数据和流数据混合在一起的时候出现这些问题。
Databricks公司首席执行官Ali Ghodsi表示:“过去十年来,企业组织一直在构建数据湖,但却未能从数据中获得洞察力,因为这就像是垃圾的输入和输出,存在数据质量、可扩展性和性能方面的问题。”
Databricks表示,数据不可靠可能会让企业无法及时获得业务洞察,同时也会阻碍机器学习模式训练等需要数据准确性和一致性的计划。
Ghodsi补充说:“Delta Lake通过‘过滤’混乱数据并阻止这些数据进入Delta Lake来应对这些挑战。Delta Lake中的数据都是干净的数据。目前没有其他数据湖可以提供这种可靠性。”
Delta Lake通过管理批量数据和流数据之间的交易处理以及多次同时写入来确保数据的准确性和可靠性。那些使用Apache Spark分析数据的企业,可以利用Delta Lakes作为主要信息源,这样他们就不需要改动现有的数据架构。此外,Delta Lakes不需要构建在不同计算系统之间迁移信息所必需的复杂数据管道,所有企业信息都可以存储在Delta Lake中,让数百个应用可以根据需要使用湖中的信息。
Delta Lakes还让个人开发者更轻松了。开发者设置好就可以通过笔记本电脑访问Delta Lake了,并且快速构建一个数据管道通向他们正在使用的应用。他们还可以访问Delta Lake的每个早期版本,以进行审核、回滚或者重现机器学习实验的结果。此外,开发者可以将Parquets(存储大型数据集常用的格式)转换为Delta Lake,避免了对系统的密集读取和新数据写入。
Ghodsi表示:“Delta Lake适合于那些希望将原始的、不可靠的数据转换为可靠数据并可用于机器学习的开发者们。Delta Lake将简化数据工程,并解决开发者每天都会遇到的可靠性问题。”
Wikibon分析师James Kobielus表示,Delta Lake实际上听起来与数据仓库非常类似,他将数据仓库定义为“事实的单一版本”,管理着一个干净数据的存储库,这些数据被下游应用用于运营商业智能、报告、预测等工作负载。
“换句话说,Databricks似乎正在拓宽市场重点,以覆盖更广泛的传统企业用例例如数据仓库。但Delta Lakes存在一个显而易见的问题:除了能够分析Spark数据仓库中的数据之外,还能支持哪些常用开源数据仓库例如Apache Hive所不能支持的?”
Delta Lake现已在Apache 2.0许可下面向客户提供了。
好文章,需要你的鼓励
宏碁Aspire 14 AI在Costco售价500美元,成为最便宜的Copilot Plus PC。该笔记本搭载英特尔Lunar Lake处理器,拥有现代化配置而非过时组件。配备16GB内存和1TB固态硬盘,电池续航近19小时。虽然设计和显示屏表现一般,但整体性能出色,AI处理能力达到40万亿次操作每秒,是预算有限用户的优质选择。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
博通公司第三季度业绩超预期,每股收益1.69美元,营收159.6亿美元,同比增长22%。公司获得来自新客户的100亿美元定制AI芯片订单,推动股价在盘后交易中上涨超3%。AI相关营收同比增长63%至52亿美元,预计第四季度将超过62亿美元。公司专注为超大规模云基础设施提供商设计定制芯片,已成为英伟达的主要竞争对手之一,年内股价上涨32%,市值超1.4万亿美元。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。