至顶网软件频道消息: 几乎所有Linux的开发工作都是公开进行的。少数例外情况之一是各大公司或黑客向Linux开发人员揭示未修补的安全漏洞。在这些情况下,这些问题首先在封闭的linux-distro列表中显示出来。现在,无论你是否相信,微软推出了自己的Linux发行版,并且已经提出要求加入这个受限制的安全列表。
这个列表——Linux-distros,包括来自FreeBSD、NetBSD的开发人员和大多数主要Linux发行商。包括Canonical、Debian、Red Hat、SUSE和云Linux供应商,例如Amazon Web Services(AWS)和Oracle。
该列表的目的是“报告和讨论尚未公开的安全问题(但即将公布)”。“即将”是指多久呢?该列表的维护人员要求安全漏洞在向组显示之后,保密期不超过14天。例如,英特尔的CPU Meltdown和Spectre安全漏洞就不会在linux-distros上讨论。已公开讨论的安全问题则在OSS-Security邮件列表中处理。
微软Linux内核开发人员Sasha Levin——是的,现在有这样的人——要求微软获得访问该列表的权利,简而言之,因为微软是Linux的发行商。
具体来说,微软提供了几个类似发行版的版本,这些版本不是现有发行版的衍生版本,而是基于开源组件。包括:
Ÿ Azure Sphere:这种基于Linux的物联网设备专用版本可以为已经部署的物联网设备提供安全更新。由于该项目即将结束公开预览并进入GA阶段,我们估计有数百万台这样的设备将被公开使用。
Ÿ 适用于Linux v2的Windows Subsystem(WSL2):这是一个基于Linux的发行版,在Windows主机上作为虚拟机运行。WSL2目前可供公众预览,并计划在2020年初进入GA阶段。
Ÿ Azure HDInsight和Azure Kubernetes服务等产品为基于Linux的发行版提供公共访问。
此外,Levin表示:“微软通过微软安全响应中心(MSRC)解决安全问题已经有数十年的历史了。虽然我们能够快速(<1-2小时)构建一个版本来解决已经披露的安全问题,但是在我们公开这些版本之前,需要进行大量的测试和验证。成为这个邮件列表的成员将为我们提供额外的时间,以进行广泛的测试。”
所有这些说法都很有道理。此外,Levin在讨论的后续报告中透露:“我们的云上的Linux使用已超过Windows,而且作为MSRC的副产品,我们已经开始接收来自用户和供应商的Linux代码问题的安全报告。对于Windows和Linux常见的问题(例如那些推测性硬件错误)也是如此。”
Linux稳定分支内核维护者Greg Kroah-Hartman支持Levin。 “他是一位长期的内核开发人员,几年来一直在帮助稳定的内核版本,对稳定的内核树具有完全写入权限。”
事实上,Kroah-Hartman“曾经在大约一年前建议微软加入linux-distros。”
“很明显,他们正在成为一家Linux发行商,很高兴看到他们现在会这样做。”
虽然有些人仍然将微软当成是Linux的敌人,但是微软似乎被视为一个完整的Linux开发合作伙伴。正如Canonical Linux内核工程师Tyler Hicks所写:“他们对更大的Linux社区有益,我觉得他们直接参与linux-distros会让其他成员受益。”
预计在未来几天内,将会对微软的会员请求进行投票。如果微软不被允许加入该列表,我会感到非常惊讶。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。