8月28日北京,在AICC2019人工智能计算大会上,百度与浪潮宣布在人工智能领域达成合作,双方将共建百度飞桨(PaddlePaddle)与浪潮AIStation联合方案。本次合作,将让深度学习开发者可以更便捷、高效地在浪潮AI服务器上应用飞桨的深度学习能力。在此基础上,双方将携手创建一个开放全新的生态,赋能产业开发者,推进产业智能化进程。
据悉,当前,飞桨的PaddleHub、AutoDL Design、PARL三大工具模块,及包括ERNIE持续学习语义理解框架在内的160+个有优势性能的预训练模型,已经整合在浪潮AIStation平台上,开发者可同时享有敏捷高效的AI计算资源管理部署和专业AI框架优化服务。
百度飞桨是国内唯一功能完备的端到端开源深度学习平台,集深度学习训练和预测框架、模型库、工具组件和服务平台为一体,拥有兼顾灵活性和高性能的开发机制、工业级应用效果的模型、超大规模并行深度学习能力、推理引擎一体化设计及系统化服务等优势,致力于让深度学习技术的创新与应用更简单。
AIStation则是浪潮面向AI企业训练场景的人工智能PaaS平台,可实现容器化部署、可视化开发、集中化管理等,为用户提供极致高性能的AI计算资源,实现高效的计算力支撑、精准的资源管理和调度、敏捷的数据整合及加速、流程化的AI场景及业务整合,有效打通开发环境、计算资源与数据资源,提升开发效率。
自开源以来,百度飞桨持续进化升级。今年7月初发布的飞桨+华为麒麟NPU合作,打通了深度学习框架与芯片,通过“硬软结合”的方式,为中国产业开发者最大限度释放深度学习能力。
今天发布的与浪潮AIStation的联合方案,将帮助完善百度飞桨在服务器侧的战略布局,进一步释放深度学习在AI 服务器端的能力。至此,飞桨在端侧、云侧实现了全方位、立体式的覆盖。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。