近日,浪潮KaiwuDB 与中国人民大学合作的论文 FOSS: A Self-Learned Doctor for Query Optimizer 被数据库领域顶会The 40th IEEE International Conference on Data Engineering (ICDE 2024) 录用。论文提出了具备自学习、自诊断能力的查询优化器 FOSS,推动了基于 AI 算法的学习型查询优化技术革新,其技术创新性获得国际顶会权威认可。浪潮KaiwuDB 高级研发工程师、人大信息学院博士孙路明为共同作者。

ICDE 是电气与电子工程师协会(IEEE)举办的旗舰会议,与 SIGMOD、VLDB 并称数据库三大顶会,也是中国计算机学会 ( CCF ) 推荐的 A 类国际会议,主要聚焦设计、构建、管理和评估高级数据密集型系统和应用等研究问题,在国际上享有盛誉并具有广泛的学术影响力。此次在荷兰召开的ICDE 2024大会,吸引到北京大学、清华大学、中国人民大学、浙江大学、MIT、斯坦福等高校及全球知名科技企业参会,共同探讨数据库、数据处理领域的先进技术问题。
近年来,数据库研究人员提出了多个基于 AI 算法的学习型查询优化器,它们或者通过自下而上的方式从头学习构建查询计划,或者通过提示(Hint)引导或者限制传统优化器的执行计划生成过程。虽然这些方法取得了一些成功,但它们却面临训练效率低下、计划搜索空间有限等方面的挑战。
本篇论文提出了一种基于深度强化学习的查询优化新框架——FOSS。FOSS 的行为类似一个诊疗查询计划的医生,它从传统优化器生成的原始计划开始优化,发现其中的性能问题,并通过一系列优化动作逐步改进计划中的次优节点。与引导传统优化器行为的黑盒方法不同,FOSS 是一个白盒方法,通过优化传统查询优化器生成的计划,更好地利用专家优化知识。此外, FOSS 中还采用了不对称的收益模型来评估两个计划之间的性能差异。为了提高 FOSS 的训练效率,本文将 FOSS 与传统优化器集成以形成一个模拟环境。利用这个模拟环境,FOSS 可以自动快速生成大量高质量的模拟经验,然后从这些经验中学习以提高其优化能力。论文在 Join Order Benchmark, TPC-DS 和 Stack Overflow 等多组数据集和负载上评估了 FOSS 的性能,实验结果表明,FOSS 在模型收敛速度、查询优化效果上优于现有学习型查询优化器,与 PostgreSQL 默认查询优化器相比,更是获得了最高 8.33 倍的加速效果。通过引入该技术,数据库查询性能、响应时间及用户体验或将有效提升,适用于 OLAP、HTAP 等数据密集型场景的查询需求。

作为业内首款分布式、多模融合、支持原生AI 的数据库产品,KaiwuDB 长期致力于为 AIoT 等重点场景提供更丰富的数据运管能力和更卓越的数据库性能,力求不断在 SQL 优化、数据库自治等重点技术上实现突破。未来也将始终坚持以先进技术打磨产品,加速学术研究与产业应用融合,为中国数据库技术创新发展、数据处理效能提升等方面贡献新思路,为政企客户伙伴提供高性能、高可用、易运维的数据服务,助力产业数字化升级与应用创新。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。