AWS今天推出了一项名为Amazon AppFlow的新服务,开发者可以使用该服务来管理AWS与其他软件即服务应用(例如Google Analytics、Marketo、Salesforce、ServiceNow、Slack、Snowflake和Zendesk。
这项全面托管的服务让用户可以创建双向数据流并实现自动化,无需编写任何自定义集成代码。AWS表示,这些数据流可以是由特定事件触发的,可以是在预设时间或按需触发。
尽管AWS称数据流可以是双向的,但该服务似乎更侧重于将数据从SaaS应用迁移到其他可以进行数据分析的AWS服务。为了解决这个问题,Amazon AppFlow附带了许多用于转换数据的工具。
值得注意的是,AppFlow服务支持Amazon专用私有互联网连接技术PrivateLink。
AWS首席布道师Martin Beeby在公布该服务的博客文章中表示,开发者花费大量时间编写自定义集成,以便能够在他们使用的SaaS应用和Amazon之间共享数据。
Beeby说:“如果数据需求发生变化,就还要对集成进行修改,这个过程不仅成本高而且十分复杂。没有大量工程资源的公司可能会发现,他们自己需要手动从应用导入和导出数据,这很耗时,而且存在数据泄漏风险,有可能存在人为错误。”
使用Amazon AppFlow的话就能避免这个问题。但是,这项服务需要一定的成本,每个数据流每次运行的成本是0.1美分,数据处理费用为每GB 2美分起。
AWS副总裁Kurt Kufeld说:“Amazon AppFlow为客户提供了一种直观、简便的方法,让他们可以将来自AWS和SaaS应用的数据进行合并,而无需通过公共互联网转移数据。客户可以借助Amazon AppFlow聚合并管理分散在其所有应用中多达PB甚至EB级的数据,而无需开发自定义连接器或者管理基础API和网络连接。”
另外,AWS还宣布现在EC2 Inf1实例可以运行在全面托管的机器学习服务AWS SageMaker上。Inf1实例运行在Inferentia上,这是一种专为机器学习工作负载设计的高性能芯片,于2019年底的re:Invent大会上首次宣布推出。
Amazon在公告中表示,Inf1实例具有以下优势:延迟降低,吞吐量提高三倍,每次推理的成本比其他芯片低40%。
亚马逊表示,这一宣布意味着开发人员现在可以选择与SageMaker一起使用的EC2实例类型,从而在为每个工作负载选择最佳成本/性能比时提供更大的灵活性。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。