AWS今天推出了一项名为Amazon AppFlow的新服务,开发者可以使用该服务来管理AWS与其他软件即服务应用(例如Google Analytics、Marketo、Salesforce、ServiceNow、Slack、Snowflake和Zendesk。
这项全面托管的服务让用户可以创建双向数据流并实现自动化,无需编写任何自定义集成代码。AWS表示,这些数据流可以是由特定事件触发的,可以是在预设时间或按需触发。
尽管AWS称数据流可以是双向的,但该服务似乎更侧重于将数据从SaaS应用迁移到其他可以进行数据分析的AWS服务。为了解决这个问题,Amazon AppFlow附带了许多用于转换数据的工具。
值得注意的是,AppFlow服务支持Amazon专用私有互联网连接技术PrivateLink。
AWS首席布道师Martin Beeby在公布该服务的博客文章中表示,开发者花费大量时间编写自定义集成,以便能够在他们使用的SaaS应用和Amazon之间共享数据。
Beeby说:“如果数据需求发生变化,就还要对集成进行修改,这个过程不仅成本高而且十分复杂。没有大量工程资源的公司可能会发现,他们自己需要手动从应用导入和导出数据,这很耗时,而且存在数据泄漏风险,有可能存在人为错误。”
使用Amazon AppFlow的话就能避免这个问题。但是,这项服务需要一定的成本,每个数据流每次运行的成本是0.1美分,数据处理费用为每GB 2美分起。
AWS副总裁Kurt Kufeld说:“Amazon AppFlow为客户提供了一种直观、简便的方法,让他们可以将来自AWS和SaaS应用的数据进行合并,而无需通过公共互联网转移数据。客户可以借助Amazon AppFlow聚合并管理分散在其所有应用中多达PB甚至EB级的数据,而无需开发自定义连接器或者管理基础API和网络连接。”
另外,AWS还宣布现在EC2 Inf1实例可以运行在全面托管的机器学习服务AWS SageMaker上。Inf1实例运行在Inferentia上,这是一种专为机器学习工作负载设计的高性能芯片,于2019年底的re:Invent大会上首次宣布推出。
Amazon在公告中表示,Inf1实例具有以下优势:延迟降低,吞吐量提高三倍,每次推理的成本比其他芯片低40%。
亚马逊表示,这一宣布意味着开发人员现在可以选择与SageMaker一起使用的EC2实例类型,从而在为每个工作负载选择最佳成本/性能比时提供更大的灵活性。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。