谷歌今天终于公布了外界期待已久的Google Cloud VMware Engine服务,该服务让客户可以轻松地在谷歌公有云基础设施平台上运行本地VMware应用。
Google Cloud总经理June Yang在介绍这项新服务的一篇博客文章中称,很多客户的IT环境都是基于VMware的,这些客户渴望将他们的VMware工作负载转移到谷歌云中,Google的云中,从而可以更轻松地采用他服务。
Google Cloud VMware Engine服务提供了一个完全托管的VMware Cloud Foundation堆栈,该堆栈由vSphere、vCenter、vSAN、NSX-T和VMware HCX等核心组件构成,托管在谷歌的云基础设施专用环境中。
“这项服务让你可以直接通过Google Cloud Console连接到VMware环境,从而在几分钟之内将本地工作负载迁移或扩展到Google Cloud。你让你可以无缝迁移到云,避免了重构应用的成本或者复杂性,并与本地环境一致地运行和管理工作负载。在Google Cloud上运行VMware工作负载,可以帮助你减轻运营负担,同时让你受益于规模和敏捷性,保持现有工具、策略和流程的连续性。”
Google Cloud VMware Engine已经酝酿有一段时间了。去年夏天,谷歌首先宣布在其云上支持运行VMware工作负载,随后又收购了一家名为CloudSimple的公司,使其能够提供完全集成的基于VMware的服务。
Google Cloud VMware Engine的推出,让谷歌与公有云竞争对手AWS以及微软保持同步,AWS和微软都有他们各自的竞品——VMware Cloud on AWS和Azure VMware解决方案。
Yang表示,这项新服务让客户可以在“几分钟内”就能在Google Cloud上启动VMware软件定义的数据中心环境,这意味着客户可以按需扩展最关键的业务应用。该服务还通过了VMware Cloud验证——对VMware云服务的最高级别的验证。
“Google Cloud VMware Engine让企业组织能够在Google Cloud中快速部署VMware环境,提供规模、敏捷性和对云原生服务的访问,同时充分利用对VMware工具和培训方面的熟悉度和投资,”VMware高级副总裁、云提供商软件业务部门总经理Ajay Patel这样表示。
由于该服务是完全托管的,因此,客户无需担心在Google Cloud上运行VMware应用带来在操作上的负担。谷歌会负责所有与基础设施相关的任务,并与NetApp、Cohesity和Dell等主流存储厂商合作提供该服务。
Yang表示,Google Cloud VMware Engine还让客户能够利用Google的其他云服务如BigQuery、Cloud Operations、Cloud Storage、Anthos和Cloud AI。
她说:“随着时间的推移,当你希望对工作负载进行迁移和现代化的时候,这些云原生服务就能帮助你简化管理、获得数据洞察、为客户提供新的创新服务。”
Constellation Research分析师Holger Mueller表示,企业工作负载运行在VMware上,云提供商试图吸引这些工作负载运行他们的服务。
他说:“更多的负载意味着更好的规模经济,这对基础设施即服务供应商就意味着能实现增长。在这场竞争中,他们试图提供最好VMware实施,以便CxO选择他们的云基础设施。”
Mueller说,理想的情况是企业可以迁移VMware工作负载而无需在虚拟机迁移到云端之后进行重新测试。“再加上Google Cloud IaaS产品的差异化,这将是一个很有吸引力的产品,但是CxO可以选择在所有三个主流IaaS厂商上运行VMware负载。”
目前已经有多个早期客户使用该服务有几个月时间了,包括资本市场基础设施提供商德意志交易所集团(Deutsche Börse Group),谷歌表示,服务体验反馈是很积极的。
德意志交易所集团执行董事会成员、首席信息官克里斯托夫·伯姆Christoph Böhm博士表示:“作为VMware的长期客户,我们希望将业务范围扩展到超大规模数据中心领域,以保持现有控制平面和生命周期管理的稳定。Google Cloud VMware Engine现在让我们能够将VMware环境快速扩展到Google Cloud,从而提高了业务敏捷性并建立了更高水平的弹性。”
谷歌方面表示,该服务已经全面上市。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
CORA是微软研究院与谷歌研究团队联合开发的突破性AI视觉模型,发表于2023年CVPR会议。它通过创新的"区域提示"和"锚点预匹配"技术,成功解决了计算机视觉领域的一大挑战——开放词汇目标检测。CORA能够识别训练数据中从未出现过的物体类别,就像人类能够举一反三一样。在LVIS数据集测试中,CORA的性能比现有最佳方法提高了4.6个百分点,尤其在稀有类别识别上表现突出。这一技术有望广泛应用于自动驾驶、零售、安防和辅助技术等多个领域。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
中国电信研究院联合重庆大学、北航发布T2R-bench基准,首次系统评估AI从工业表格生成专业报告的能力。研究涵盖457个真实工业表格,测试25个主流AI模型,发现最强模型得分仅62.71%,远低于人类专家96.52%。揭示AI在处理复杂结构表格、超大规模数据时存在数字计算错误、信息遗漏等关键缺陷,为AI数据分析技术改进指明方向。