据悉,微软正在开发旗下的Azure 栈混合计算家族的新成员,新成员的代号为Azure Stack“Fiji”。据笔者的联系人称,Fiji旨在令用户能够将Azure放在本地云运行,本地云由公共Azure管理并能够以微软服务器机架形式直接提供给用户。
微软是顶级云供应商里将混合计算支持作为自己战略关键部分的第一家。不过自从微软自2017年7月开始销售Azure Stack以来,客户对混合的期望已经改变。AWS最近通过AWS Outposts进入混合云战场,谷歌云则利用Anthos进入。微软正开发相应的新混合云功能。
据了解,Azure Stack Fiji的主要对标的是AWS自2019年12月开始提供给普通用户的亚马逊AWS Outposts产品。AWS对Outposts的描述如下:“Outposts是一项完全托管服务,Outposts服务将AWS基础设施、AWS服务、API和工具扩展到差不多所有的数据中心、合用空间或本地设施,实现了真正一致的混合体验。AWS Outposts的理想工作负载是那些要求以低延迟访问本地系统、本地数据处理或本地数据存储的工作负载。”而微软Azure Stack Fiji的目标将重点放在为用户提供低延迟功能上,低延迟功能可以通过Azure架构(大致是通过Azure Arc)进行完全管理,而且使用微软用于运行Azure的相同硬件。
Azure Stack Hub是目前微软混合计算的核心,少数微软合作伙伴经过认证的服务器硬件上作为设备预先安装了Azure Stack Hub。要实现这一目标并非易事。微软必须修改旗下Azure服务的运行方式,还要考虑其安全模型的工作方式及调整微软对配置和管理其硬件方面的取态。笔者不太确定微软在这方面能走多远。
如果你研究过微软代号,可能就会发现,这实际上不是微软第一次用“Fiji”作代号。希望这次用Fiji作代号的结局不会太差。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。