据悉,微软正在开发旗下的Azure 栈混合计算家族的新成员,新成员的代号为Azure Stack“Fiji”。据笔者的联系人称,Fiji旨在令用户能够将Azure放在本地云运行,本地云由公共Azure管理并能够以微软服务器机架形式直接提供给用户。
微软是顶级云供应商里将混合计算支持作为自己战略关键部分的第一家。不过自从微软自2017年7月开始销售Azure Stack以来,客户对混合的期望已经改变。AWS最近通过AWS Outposts进入混合云战场,谷歌云则利用Anthos进入。微软正开发相应的新混合云功能。
据了解,Azure Stack Fiji的主要对标的是AWS自2019年12月开始提供给普通用户的亚马逊AWS Outposts产品。AWS对Outposts的描述如下:“Outposts是一项完全托管服务,Outposts服务将AWS基础设施、AWS服务、API和工具扩展到差不多所有的数据中心、合用空间或本地设施,实现了真正一致的混合体验。AWS Outposts的理想工作负载是那些要求以低延迟访问本地系统、本地数据处理或本地数据存储的工作负载。”而微软Azure Stack Fiji的目标将重点放在为用户提供低延迟功能上,低延迟功能可以通过Azure架构(大致是通过Azure Arc)进行完全管理,而且使用微软用于运行Azure的相同硬件。
Azure Stack Hub是目前微软混合计算的核心,少数微软合作伙伴经过认证的服务器硬件上作为设备预先安装了Azure Stack Hub。要实现这一目标并非易事。微软必须修改旗下Azure服务的运行方式,还要考虑其安全模型的工作方式及调整微软对配置和管理其硬件方面的取态。笔者不太确定微软在这方面能走多远。
如果你研究过微软代号,可能就会发现,这实际上不是微软第一次用“Fiji”作代号。希望这次用Fiji作代号的结局不会太差。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
KAIST AI团队通过深入分析视频生成AI的内部机制,发现了负责交互理解的关键层,并开发出MATRIX框架来专门优化这些层。该技术通过语义定位对齐和语义传播对齐两个组件,显著提升了AI对"谁对谁做了什么"的理解能力,在交互准确性上提升约30%,为AI视频生成的实用化应用奠定了重要基础。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
乔治亚理工学院和微软研究团队提出了NorMuon优化器,通过结合Muon的正交化技术与神经元级自适应学习率,在1.1B参数模型上实现了21.74%的训练效率提升。该方法同时保持了Muon的内存优势,相比Adam节省约50%内存使用量,并开发了高效的FSDP2分布式实现,为大规模AI模型训练提供了实用的优化方案。