在疫情的催化下,线上业务正在飞速向线上经济的方向进行拓展。传统企业如何才能跟上这场百年未见的大变革?在这里,混合云正式向大家问好。
过去,在一些企业眼中,所谓数字化转型,只不过是将传统的线下业务转移到线上,而这种方式无非是换了一种经营模式而已。从表象上看,这种观点也没有很大的差错。但是要把数字化转型与企业的营销、制造、管理相结合,深入进行分析的话,应该就不是换一种营销模式这么简单了。
随着实践越来越越深入,企业慢慢从业务在线化转向了真正的数字化——线上线下的业务数据得以被收集、处理、存储,而经过数据分析,对应的结果又会被反馈回具体的业务,为企业产品调整、商业模式转变以及管理方式变革提供参考。
这意味着,企业的线上线下业务会将进一步被打通,大数据在这个过程中将充分发挥出它的技术优势,实现对企业未来产品、未来技术、未来发展方向的数字化预判,帮助企业重塑在市场中的核心竞争力。
那么,企业如何把分散于各个地方的数据收集起来,同时释放数据的最大价值,让自己在这场数字化大潮中立于不败之地呢?这就需要一个可以将云、边、端所有业务融合成一体的一体化平台。
很明显,专注于企业内部业务应用的数据中心或私有云是无法全面满足这一需求的。然而,可以满足海量用户业务应用的公有云在隐私和数据保护方面又很难取得企业信任。于是,能够兼有两者优势的混合云架构开始受到越来越多企业的重视。
但是,新的问题是,企业业务在混合云上的部署,也并非是一件一帆风顺的事情。企业上云,需要如何“掌舵”?灵活开放的云平台应当如何去进行构建?跨云业务又将如何协同,才能让业务管理更加高效?从“容”上云,敏捷开发的目标又应该如何才能实现?当前,很多企业对混合云还存在着很多的疑问。
为此我们总结了有关混合云的100个相关的问题,推出《混合云「百科全书」》特刊,从决策、部署、运营、开发四个维度为大家全面阐释了何为混合云,混合云可以为企业带来什么,以及企业如何更好地搭建混合云。希望借此帮助企业更好地理解混合云、部署混合云、用好混合云,为企业现代化应用部署和管理提供参考、打好基础。
好文章,需要你的鼓励
亚利桑那州立大学的研究团队开发了RefEdit,这是一种新型图像编辑AI系统,能够准确理解和处理指代表达(如"中间那个人"、"右边的猫")。通过创建RefEdit-Bench基准测试,研究者们证明现有模型在多物体场景中表现不佳。他们设计了一种创新的数据生成流程,仅用2万样本就训练出的RefEdit模型超越了使用数百万样本训练的大型模型。这一突破使AI图像编辑在复杂场景中更加精确和实用。
这项研究提出了Critique-GRPO,一种创新的在线强化学习框架,将自然语言批评与数字反馈相结合,克服了传统仅用数字反馈的三大局限:性能瓶颈、自我反思效果有限和顽固性失败。实验表明,该方法使大语言模型能够从错误中学习并改进,在八项数学和通用推理任务中,将Qwen2.5-7B和Qwen3-8B模型的平均通过率分别提高了约4.5%和5%,超越了包括那些引入专家示范的方法。研究还揭示,高熵探索和长回答并不总是最有效的学习方式,质量更重要。这一方法为大语言模型的自我提升能力开辟了新路径。
这篇研究介绍了"量化LLM评价者",一个创新框架,能使大型语言模型(LLM)在评估其他AI输出时更接近人类判断。由麻省理工和Adobe联合研发的这一方法,将评估过程分为两个阶段:先让LLM生成文本评价,再用轻量级机器学习模型将这些评价转化为更准确的数值评分。研究提出了四种评价者模型,适用于不同评估场景,实验表明它们不仅能显著提高评分准确性,还比传统微调方法更节省计算资源。这一框架特别适合人类反馈有限的场景,为AI评估领域开辟了高效且可解释的新路径。
这项研究由IDEA、华南理工大学和北京大学联合开发的Rex-Thinker系统,通过模仿人类的链式思考方式来解决物体指代问题。与传统直接输出边界框的方法不同,它采用规划-行动-总结的三步骤推理,使AI能像人类一样逐步分析图像中的候选物体,并在找不到匹配物体时拒绝作答。通过构建90,824样本的HumanRef-CoT数据集和两阶段训练方法,系统在精度、可解释性和泛化能力上均取得了显著进步。