数据保护和数据管理技术开发商Veeam Software周一宣布收购Kasten,后者是Kubernetes原生工作负载的备份和灾难恢复技术的开发商。
Veeam首席技术官兼产品战略高级副总裁Danny Allan表示,此举的背景是IT行业看到了基于容器工作负载保护需求激增。Veeam最近将其全球总部迁至俄亥俄州哥伦布市。
Allan援引研究公司企业战略集团(Enterprise Strategy Group)的统计数据称,到2023年,预计约有50%的工作负载将转移到容器中。
Allan对CRN表示,“容器就在这里……我们看到,容器的普及速度正在变得越来越快,这和我们曾经在VMware上看到过的情况非常类似。而VMware本身也在将Kubernetes集成到其Tanzu技术中。这将进一步推动这种技术的普及。”
Allan表示,很多公司都在开发保护基于容器数据的技术,其中绝大部分都是从存储的角度出发的,但Kasten却是另辟蹊径。
他表示:“Kasten是从应用的角度看待容器的……这与Veeam将自己打造成十亿美元市值公司的思路是一致的。在Veeam横空出世的时候,每个人都在使用代理。但是,当数据保护转移到虚拟化环境中时,专注于应用就变得很重要。Veeam使用了以应用程序为中心的方式来迁移数据,完全不需要使用代理。”
Allan表示,Kasten的技术可以保护云端和本地环境中的Kubernetes容器。
他表示:“该软件作为Kubernetes软件进行部署,因此这是非常原生的体验。”他说:“我们将保持原生的DevOps体验,以提供云端和本地环境中的可见性。”
Allan表示,Veeam从今年年初开始与Kasten建立了合作伙伴关系,两家公司在上周的VMworld会议上展示了他们的技术集成。他表示,两家公司均为Insight Partners所有,这一点有助于推动收购。
Veeam将以1.5亿美元的现金和股权收购Kasten。
他表示:“这证明了我们在这一领域的投资。”他表示:“我们已经是虚拟化和云环境中数据保护的领导者……我们正在迈向'Act 2',它将专注于云端和容器。”
Allan表示,对于Veeam而言,收购Kasten而不是继续保持与其的合作伙伴关系非常重要。
他表示:“容器市场的发展速度决定了我们将采取行动,以确保在这个市场上的领导地位。” 他表示:“而Kasten在专注应用程序的容器方面拥有领导地位。我们将保持这种领导地位。”
一些重量级的存储厂商已经开始在保护基于Kubernetes容器的工作负载方面布局,并进行了大量投资。而收购Kasten的举措让Veeam成了其中的新成员。
Pure Storage上个月表示,将以3.7亿美元的全现金交易收购Portworx。Pure Storage将Portworx描述为领先的Kubernetes数据服务平台的开发平台,该平台可以在生产环境的容器中运行关键任务工作负载。
数据保护和数据管理软件开发商Commvault在7月发布了其HyperScale X存储设备,该设备采用了广泛使用的容器存储接口(CSI)来保护基于Kubernetes的有状态容器。
NetApp今年早些时候放弃了自己基于容器的存储技术开发,转而支持Project Astra,该公司称其目标是将持久性存储与Kubernetes容器结合在一起。
容器存储也已成为投资目标。MayaData是总部位于加利福尼亚州圣何塞的Kubernetes环境容器附加存储开发商,该公司今年2月获得了2600万美元的投资,投资方中包括位于佛罗里达州劳德代尔堡(Fort Lauderdale)的软件定义存储技术开发商DataCore。
好文章,需要你的鼓励
Liquid AI发布了新一代视觉语言基础模型LFM2-VL,专为智能手机、笔记本电脑和嵌入式系统等设备高效部署而设计。该模型基于独特的LIV系统架构,GPU推理速度比同类模型快2倍,同时保持竞争性能。提供450M和1.6B两个版本,支持512×512原生分辨率图像处理,采用模块化架构结合语言模型和视觉编码器。模型已在Hugging Face平台开源发布。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。