1970年,Unix系统诞生,成为开源的开端;1990年代,“开源软件”一词被提出。自后,一波又一波的开发者纷纷投入到免费开源系统的开发,GNU/Linux系统发行版出现,并在计算机领域兴起了一场开源文化运动。
不过,在过去的这20多年里,“开源”还只是“开发者语言”,真正关心源代码、真正关注开源价值的,多数都只是开发者。直到近几年来,开源才真正开始“出圈”——在进行数字化转型的过程中,许多企业都处于快速创新、成本控制、应用快速更新迭代等多重压力之下,而开源因为更灵活、更开放,刚好可以解决这些问题。同时,随着开源行业标准渐渐成型,技术环境越来越成熟,开源的普及也变得水到渠成。
具体来说,在文化层面,开源可以极大地加速企业创新,它可以让每个人都参与到解决问题的过程当中,发挥集体的智慧,激发每个人的创新力;在应用层面,开源最大的特点是开放,它可以让开发人员在其中更好地互动、互益,同时减少应用开发“重复造轮子”的问题,降低非必要成本;在基础架构层面,开源还是云计算非常关键的技术,目前市场上的许多主流公有云和很多企业使用的私有云基于的都是开源技术。
所以,开源不仅仅是代码的一种共享,同时也是思想和资源的共享,它将成为企业加速数字化转型必不可少的一环。但老生常谈的是,开源不等于免费。要真正地创造价值,开源还需要与商业紧密结合,而这个过程依然处处是“坑”。
那么,开源在哪些场景更有“用武之地”?在使用开源的过程中如何“避坑”?如何利用开源把云计算的价值最大化?11月26日 14:00-15:30,在线参与“企业开源实践联盟城市高管在线圆桌会.重庆&成都站”,与开源实践先行者以及红帽技术专家共同探讨企业的“数智化”转型路径,以及混合云平台构建过程中的开源价值。
活动亮点

扫描图片上方二维码,立即报名
席位有限,先到先得!
好文章,需要你的鼓励
浙江大学研究团队开发了ContextGen,这是首个能够同时精确控制多个对象位置和外观的AI图像生成系统。该系统通过情境布局锚定和身份一致性注意力两大创新机制,解决了传统AI在多对象场景中位置控制不准确和身份保持困难的问题,并创建了业界首个10万样本的专业训练数据集,在多项测试中超越现有技术。
谷歌推出升级版图像生成模型Nano Banana Pro,基于最新Gemini 3语言模型构建。新模型支持更高分辨率(2K/4K)、准确文本渲染、网络搜索功能,并提供专业级图像控制能力,包括摄像角度、场景光照、景深等。虽然质量更高但成本也相应增加,1080p图像费用为0.139美元。模型已集成到Gemini应用、NotebookLM等多个谷歌AI工具中,并通过API向开发者开放。
上海交通大学研究团队开发的SR-Scientist系统实现了人工智能在科学发现领域的重大突破。该系统能够像真正的科学家一样,从实验数据中自主发现数学公式,通过工具驱动的数据分析和长期优化机制,在四个科学领域的测试中比现有方法提高了6%-35%的精确度。这标志着AI从被动工具转变为主动科学发现者的重要里程碑。