微服务与DevOps代表着两波重要的技术发展趋势,并不断给企业带来实际价值。这两种实践有着共同的核心——为企业提供更好的敏捷性与执行效率。也正因为如此,DevOps成为实现微服务的关键因素。
微服务与DevOps息息相关
DevOps致力于持续监控、测试并部署软件,微服务架构的本质则在于模块化属性,即通过小型单一服务执行单一功能。从这个角度来看,模块化软件很容易适应DevOps结构,允许开发者轻松实现增量式变更。单一微服务天然更易于升级、构建、测试、部署与监控,这正是DevOps希望达成的关键目标。因此,只要项目采用基于微服务的结构,DevOps就能显著加快交付速度并提升交付质量。
此外,DevOps实践还要求将大问题拆分成多个较小的部分,再由团队逐一加以解决。从这个角度看,微服务更加与DevOps息息相关,二者同样要求小型团队对企业服务做出功能性变更,且微服务高度强调在低复杂度环境下由增强型小规模团队完成实施与协作。在低复杂度环境的支持下,我们得以建立持续交付管道并保持稳定的部署流程。同样的,容器化微服务同样可以加快部署与内置功能实现速度,确保新服务能够立即在任意系统上运行。
自动化运营不仅增强了微服务方法,同时也建立起适应性更好、更易于扩展、能够快速执行部署的良好环境。将DevOps与微服务融合至开发与测试流程中,能够切实增加团队的产出与服务质量。
敏捷开发中的DevOps与微服务
此外,DevOps与微服务方法还有着相似的组织结构与开发文化,而且也都对云基础设施及自动化体系有着天然亲和性。二者在开发、速度与可扩展性层面提出了相似的要求,而这一切都高度契合敏捷开发的基本思路。
敏捷方法还顺理成章地强调对微服务中两大核心概念的支持:持续集成(CI)与持续交付(CD)。持续交付提出以质量为中心的理念,要求加快对生产成果的变更,由此加快部署流程。
基于微服务的架构总是会带来这样或那样的改变,这些改变也得到现代应用程序开发者们的欣然接受。基于微服务的架构让生产效率得到惊人的提升,同时也给那些对灵活性及可扩展性要求极高的应用程序提供了更强大的解决方案。
微服务给DevOps带来众多收益,例如提升了敏捷性,缩短构建、测试与部署周期;增强了可靠性与可用性,缩短新版本的发布周期;改进了可扩展性与可修改性,灵活支持更多新型框架、数据源及其他资源;优化了管理性,并降低团队规模、提升团队独立性。
总结
微服务能够支持开发与运营层面的各类通用工具集,以此为基础让DevOps更轻松地保持运营、解决问题,将DevOps的生产力推向新的高峰。正所谓DevOps微服务一相逢,便胜过单体无数。
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。