随着开源软件的深入使用,人们已经不再讨论要不要采用开源技术的问题,而是在考虑如何更好地使用开源、探索开源。实际上,如今如何更好地规范使用和管控好开源技术也成为大家共同面临的问题和挑战。这些问题主要体现在以下几个方面:行业开源的合规问题、如何向开源社区做出贡献、开源工具的选择问题,和如何提升企业的开源竞争力、如何积极引入和贡献开源技术相关的经验以及倡导集团内部开源文化的建设,促进项目共享与协作的价值最大化等。
开源治理的定义与内涵
开源治理,就是在企业内部形成体系化的开源技术全生命周期管理流程和规范,在开源技术的导入、应用、维护、退役各环节形成公司层面的统一标准,并构建与之相匹配的团队技能和开源文化。同时,通过开源治理为客户建立清晰路线,实现开源技术收敛,建立属于企业自身的开源技术全景图及发展路线规划图,协助企业提升其实践能力及标准化管理能力,最终达到风险可控,并增加企业在业界的影响力。
红帽是开源的领头羊,不仅在开源技术的研发、社区的管理上有着丰富的经验,同时在开源治理方面也拥有成熟的方法论。红帽认为,开源治理是一个系统化工程,不能仅仅通过实现某项技术或者某个流程就可以实现有效管理,红帽倡导开源治理需要遵循开源之道,实现流程与能力并举,技术和文化同行,建设全方位的开源管理能力,通过各个维度的全面推进,最终实现开源治理的有效落地。
具体地说,开源治理需要实现四个维度的建设:开源治理团队的建设;开源治理流程的建设;开源技术能力的培养;开源组织文化的建设,简单概括为团队(People)、流程(Process)、技术(Tech)和文化(Culture),简称 PPTC。PPTC 每个维度都需要解决各自的领域任务,同时,我们认为四个方面相辅相成,是一个有机整体:
开源治理团队主要目标是:建设一个立体团队,包括战略规划团队、运营执行团队、技术支撑团队;
开源治理流程的主要目标是:建立开源软件管理制度、开源软件生命周期管理流程、开源技术成熟度评估模型、开源技术库、开源软件管理平台;
开源技术能力建设主要包括:建立开源技术路线图、重点开源技术领域研究、开源技术应用场景课题研究、开源实验室;
开源文化建设可以从三个方面展开,包括参与开源社区、实现自主可控、与开发和运维相结合、实现敏捷灵活 DevOps 体系;深度参与开源项目,引领创新。
红帽开源软件成熟度评估模型
红帽还推出了开源软件成熟度评估模型,该评估模型具有如下特点:
1. 全面综合比对:从五个整体维度,共40+具体项目进行评估;
2. 针对性: 针对行业特点及企业管理特性对权重及评估细项进行调整(评分的权重及细项的取舍);
3. 客观性:详细说明了评估依据和建议参考的信息来源;
4. 可执行性:客观评分标准,按对象分类进行评估;
红帽开源治理的实施步骤
根据多年的开源软件部署和管理经验,红帽建议企业开源治理按照如下步骤实现:
1.现状调研。红帽的专家会通过现场访谈及问卷调研等多种方式,对客户的开源软件使用情况进行初步摸底。
2.综合分析。对所收集的信息进行系统分析,围绕团队(People)、流程(Process)、技术(Tech)和文化(Culture)四个维度进行综合分析总结,为客户罗列当前的优势、弱点,改善的机遇及潜在的风险等。
3.治理规划。协助客户制定开源软件治理策略,为客户建立清晰的技术路线图、管理方法准则、管理流程等,协助企业提升其实践能力及标准化管理能力,最终达到风险可控,并增加企业在业界的影响力。
4.模型修订。基于红帽的开源软件成熟度评估模型的基线,结合客户的实际情况,调整评估细项(评分细则,评分权重等),与客户一同完成最合适他们的新技术模型,为后续开源准入评估做准备。
5.试点实践。配合客户选择1-2个试点技术领域,验证评估流程及评估模型,并通过实践的方式将管理方法及思路教会客户。
6.电子化落地。与客户一起构建电子化管理平台(可选)。
7.知识推广。知识转移及配合客户全面推广。
值得一提的是,开源治理是系统工程,涉及多个方面,任何一个环节处理不好可能影响最终结果,这其中有几个需要重点注意的问题:
1.特别需要领导的支持,上下一心,开源治理才能有成效。
2.重视数字平台构建,是后续治理效率的重要手段及工具。
3. 开源发展是快速的,治理的工作也不是一成不变,我们希望通过开源治理方法论的学习,协助客户建立开源治理体系,后续更多需要客户自己继续严格执行。
好文章,需要你的鼓励
Writer首席执行官May Habib指出,企业在构建和扩展AI智能体时面临重大挑战。智能体在构建、运行和改进方式上与传统软件截然不同,需要抛弃传统软件开发生命周期。智能体不会可靠地遵循规则,而是结果导向、具备解释和适应能力。企业需要采用目标导向方法,设计业务逻辑蓝图而非工作流程。质量保证也需要评估非二元行为和实际应用表现。智能体维护需要新的版本控制系统,涵盖提示、模型设置等所有影响行为的因素。
中科院团队开发的SimpleGVR系统革新了AI视频增强技术,通过直接在潜在空间处理和创新的分阶段训练策略,能够将AI生成的低分辨率视频高效提升至高清画质。该系统不仅提升分辨率,还能修正AI视频特有的颜色混合等问题,在多项指标上超越现有顶级方法,为AI视频生成领域提供了实用的解决方案。
Salesforce首席执行官马克·贝尼奥夫表示,公司正大力推进人工智能应用,AI代理现在承担了公司30%至50%的工作。他认为员工应适应AI替代人工的趋势,转向更高价值的工作。然而,这一变化导致约1000名员工被裁,虽然公司计划招聘同等数量新员工,但主要专注于销售AI技术。这一趋势在科技行业普遍存在,今年已有超过63000个科技岗位消失,AI被认为是重要原因之一。
浙江大学联合腾讯AI实验室提出KnowRL方法,通过在强化学习中集成事实性奖励机制,有效解决慢思维AI模型在推理过程中的幻觉问题。该方法在保持原有推理能力的同时,显著提升了模型的事实准确性,为构建更可靠的AI系统提供了新思路。