IBM即将收购位于美国波士顿的Turbonomic该公司,该公司的平台可以帮助企业降低云支出同时提高应用性能。
IBM没有透露这笔交易的金额,但有消息人士告诉路透社,交易估值在15亿至20亿美元之间,这比Turbonomic在上一轮融资后获得的9.63亿美元估值要高得多。
Turbonomic提供一个所谓应用资源管理平台,利用人工智能帮助企业优化公有云环境。该平台专注于两个主要场景,一个是优化云应用性能,另一个是降低云应用带来的基础设施成本。
Turbonomic的AI模型可以分析企业的云环境,检查是否分配给工作负载的硬件资源少于最理想的所需硬件资源。例如,Turbonomic可以检测周末流量激增期间是否需要为电子商务网站数据库提供更多的网络带宽。然后,AI模型向管理员提供有关如何解决已确定问题的建议。
Turbonomic的平台提供类似建议来减少云支出的浪费,这也是Turbonomic的另一重要卖点。例如,Turbonomic可以告诉IT团队他们为某个工作负载配备了超出所需的存储容量,同样也可以检测出应用是否运行在一个没有必要那么庞大且昂贵的云实例上。
IBM计划把Turbonomic与最近收购获得的监控产品Instana进行集成。Instana在堆栈上层提供了可观察性。Turbonomic主要专注于检测基础设施级的问题,例如应用由于未被分配足够多的虚拟机处理器而导致运行缓慢,而Instana主要致力于发现软件级的问题,例如因为应用升级存在漏洞而导致延迟越来越高。
IBM认为另一款可以通过收购Turbonomic得到加强的产品是IBM Cloud Pak for Watson AIOps。去年推出的这款产品提供了由AI生成的建议(有些类似于Turbonomic所能提供过的建议)可以帮助IT团队解决基础设施相关问题。
此次收购Turbonomic将推动IBM从传统业务领域(例如专业服务)向云和AI等高增长市场的重心转移。作为该战略的一部分,去年底IBM宣布计划分拆规模190亿美元的管理基础设施服务部门。当时IBM首席执行官Arvind Krishna表示,这次分拆将有助于IBM把更多精力放在“规模高达1万亿美元的混合云市场机会”上。
IBM云与数据平台事业部高级副总裁Rob Thomas在一份声明中表示:“IBM将继续重塑自己作为一家混合云和AI厂商的未来前景。收购Turbonomic,是我们致力于通过最具影响力的投资来推进这一战略的又一例证。”
IBM还特别提到了AIOps的行业趋势,AIOps是一种利用机器学习实现重复性IT任务自动化的一种技术。IBM自动化部门总经理Dinesh Nirmal表示:“我们相信以AI为基础的自动化已经成为一个必然趋势,这将让所有以信息为中心的任务变得更加高效。其他主流行业参与者(例如ServiceNow)近期也进行了相关投资以扩展自身的AIOps能力。
IBM预计将在第二季度完成对Turbonomic的收购。
Gartner分析师Chirag Dekate在电子邮件中表示:“IBM收购Turbonomic,代表了IBM在为那些希望加速云迁移和价值增长的企业IT领导者提供聚合价值方面,迈出了自然而然的一步。”
好文章,需要你的鼓励
今年是AI智能体的爆发年。聊天机器人正演进为能代表用户执行任务的自主智能体,企业持续投资智能体平台。调研显示,超半数高管表示其组织已在使用AI智能体,88%在智能体上投入过半AI预算的公司已从至少一个用例中获得投资回报。Gartner预测,到2026年40%的企业软件应用将包含智能体AI,2035年智能体AI可能驱动约30%的企业应用软件收入。企业开始将AI智能体视为员工,建立招聘培训体系。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
谷歌的Nano Banana Pro AI模型生成的图像逼真度令人震惊,其关键在于完美模拟了手机相机的拍照特征。这些AI生成的图像具备手机拍照的典型特点:明亮平坦的曝光、较大的景深范围、略显粗糙的细节处理,甚至包含噪点。该模型还能自动添加符合情境的细节元素,如房产照片的水印等,使图像更加真实可信。这种技术进步意味着辨别AI生成内容变得更加困难。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。