AWS今天宣布在GitHub上提供SaaS Boost,这也是AWS为简化客户软件项目而发布的一系列开源工具中的最新一项。
SaaS应用的用途和设计差异很大,但通常都基于相同的基本构建块进行构建。一个应用需要一个系统,用于加载用户、集成支付处理服务以向客户收费、监控各项机制以检测技术故障。SaaS Boost以预打包模块的形式提供这些组件,再加上其他组件,让企业无需从零开始构建所有组件。
SaaS Boost的模块主要实施形式是软件容器,利用AWS Lambda无服务器计算服务来运行其中的很多服务。
这些模块中相当大一部分专用于用户加载,在企业SaaS应用中,这通常涉及的不仅仅是为客户注册时生成帐户。应用通常还需要分配其他基础设施来支持新用户。SaaS Boost具有可立即使用的代码,这样SaaS服务就可以使用这些代码为每个新用户设置一个带有虚拟专用网络的AWS基础设施环境。
AWS的工程师还添加了一些扩展选项让企业可以自定义配置工作流程。例如,企业可以配置SaaS Boost以为每个用户提供除计算资源和虚拟专用网络之外的数据库实例。
另一个SaaS Boost模块提供了将客户帐户连接到支付系统的功能,以便可以对他们进行计费。基础设施资源分配给每个客户,然后通过第三个管理控制台模块进行管理。IT团队可以使用这个控制台来控制各项设置,例如分配给部署的实例大小。
SaaS Boost涵盖的另外两个场景是升级和监控。AWS提供给的一个工具可以让开发人员将应用升级项打包到容器中,使其更易于推送部署。为了帮助企业监控应用的运行状况,SaaS Boost还可以收集有关服务的基础设施利用率和访问模式相关数据。
该工具包中的很多模块都是运行在AWS Lambda服务上的。根据SaaS Boost文档显示,这是因为用于加载用户等任务的代码只会偶尔被激活(例如当新客户注册时才会激活),而Lambda的定价模型可降低此类零星工作流程的成本,该服务是按照代码激活和每次运行的持续时间进行计费的,这要比租用一个按照配置(而不是使用情况)每秒计费的云实例更具成本效益。
AWS高管Adrian De Luca在博客中写道,SaaS Boost已经引起了数百位开发人员的兴趣。未来,AWS希望围绕该项目构建一个开源贡献者社区,此外还计划邀请外部维护者帮助确定项目功能路线图的方向。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。