AWS今天宣布在GitHub上提供SaaS Boost,这也是AWS为简化客户软件项目而发布的一系列开源工具中的最新一项。
SaaS应用的用途和设计差异很大,但通常都基于相同的基本构建块进行构建。一个应用需要一个系统,用于加载用户、集成支付处理服务以向客户收费、监控各项机制以检测技术故障。SaaS Boost以预打包模块的形式提供这些组件,再加上其他组件,让企业无需从零开始构建所有组件。
SaaS Boost的模块主要实施形式是软件容器,利用AWS Lambda无服务器计算服务来运行其中的很多服务。
这些模块中相当大一部分专用于用户加载,在企业SaaS应用中,这通常涉及的不仅仅是为客户注册时生成帐户。应用通常还需要分配其他基础设施来支持新用户。SaaS Boost具有可立即使用的代码,这样SaaS服务就可以使用这些代码为每个新用户设置一个带有虚拟专用网络的AWS基础设施环境。
AWS的工程师还添加了一些扩展选项让企业可以自定义配置工作流程。例如,企业可以配置SaaS Boost以为每个用户提供除计算资源和虚拟专用网络之外的数据库实例。
另一个SaaS Boost模块提供了将客户帐户连接到支付系统的功能,以便可以对他们进行计费。基础设施资源分配给每个客户,然后通过第三个管理控制台模块进行管理。IT团队可以使用这个控制台来控制各项设置,例如分配给部署的实例大小。
SaaS Boost涵盖的另外两个场景是升级和监控。AWS提供给的一个工具可以让开发人员将应用升级项打包到容器中,使其更易于推送部署。为了帮助企业监控应用的运行状况,SaaS Boost还可以收集有关服务的基础设施利用率和访问模式相关数据。
该工具包中的很多模块都是运行在AWS Lambda服务上的。根据SaaS Boost文档显示,这是因为用于加载用户等任务的代码只会偶尔被激活(例如当新客户注册时才会激活),而Lambda的定价模型可降低此类零星工作流程的成本,该服务是按照代码激活和每次运行的持续时间进行计费的,这要比租用一个按照配置(而不是使用情况)每秒计费的云实例更具成本效益。
AWS高管Adrian De Luca在博客中写道,SaaS Boost已经引起了数百位开发人员的兴趣。未来,AWS希望围绕该项目构建一个开源贡献者社区,此外还计划邀请外部维护者帮助确定项目功能路线图的方向。
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。