多年以来,随着AI技术的发展与变革,各个行业及IT决策者都在大力投资这一领域。AI有望改变企业内的一切、转变人们的工作方式,因此对业务及企业的宏观/微观层面控制体系至关重要。而随着AI的发展演进,我们更需要关注自己的业务功能变化,将每时每刻的需求与改进融入AI解决方案。
虽然只处于试点和起步阶段,AI已经显示出无可比拟的力量与影响力。随着AI的后续发展,预计我们将迎来一波又一波更大、更广泛的变革。那么,AI到底要怎样继续改进?
随着人们对于AI的努力改进,全社会对计算及基础设施资源的需求也将同步增长。当AI真正实现全面普及之后,我们无疑需要一个更经济、更高效的环境容纳如此庞大的流程。每家企业都需要适应这些变化,并以充分的灵活度迎接新型基础设施。换言之,云技术、特别是混合云解决方案,必将成为AI的实现基础。混合云解决方案能够保证将AI基础设施需求消解为业务需求,同时从容维持并匹配技术动态。只有这样,企业才能在持续使用、开发并实现AI方案的同时,不致对自身基础设施性能造成严重影响。
下面,我们就聊聊在评估潜在合作伙伴、选择最佳平台时需要关注的几大核心因素。
核心因素一 高算力
企业需要高性能计算资源(包括CPU与GPU)探索AI领域内的种种可能性。目前大部分企业仍在AI实验阶段,所以倾向于建立强大的CPU环境处理基础AI负载。但事实证明,基于CPU的现有计算架构并不能满足深度学习流程的需求;可扩展神经网络算法的部署以及高性能网络/存储管理都对算力和数据处理密度提出了极高的要求。
核心因素二 存储容量
存储容量是一切AI基础设施的基本要求;随着数据量的增长,存储系统也必须拥有扩展能力。因此对企业来说,最重要的就是明确AI实验究竟需要何等规模的存储系统支持。只有以强大的存储扩展计划与容量管理能力为依托,企业才能从容做出实时决策;也只有这样,我们手中的AI应用才能在数据的滋养下愈发完善。
核心因素三 网络基础设施
无缝网络是AI基础设施中的又一重要组成部分。考虑到可扩展性的重要意义,企业必须建立起高带宽、低延迟的网络体系。深度学习算法高度依赖于通信能力,随着AI实验的推进与扩展,网络系统自然要同步成长与进化。对于网络这种泛用性服务,企业有必要选择一家专业的基础设施服务商,由他们在全球范围内提供服务打包与技术支持,并确保不同区域内的堆栈始终拥有良好的分布式与一致性。
核心因素四 安全性
由于AI模型往往会接触到大量来自医疗保健、金融等部门的敏感数据,因此对个人数据的安全维护就成了一大现实挑战。这些信息在本质上极其脆弱;一旦管理不当、特别是被不可靠来源所利用,则可能对使用AI模型的企业造成巨大危害。此外,如果向AI系统中添加了非必要数据,则可能引发决策和推理错误。因此,我们需要一套更安全的AI基础设施保障数据免受侵扰。
核心因素五 解决方案必须具有成本效益
这一切还只是AI模型的发展起点。随着研究工作的缓慢推进,AI本身也会变得更加复杂、开发成本随之一路飙升。各个企业必须努力找到具有成本效益的解决方案,这样才能推动流程延续与业务增长。具体来讲,企业在支撑AI探索方面势必要不断升级网络、服务器及存储等基础设施,满足AI模型的训练与推理需求。整个过程将极其昂贵,因此必须谨慎选择那些资源经济性更好的服务供应商。只有这样,企业才能更明智地规划、决策并投资于AI基础设施,保证自身在被资源支出压垮之前找到提升自身业务绩效的宝贵机会。
好文章,需要你的鼓励
微软宣布为Word和Excel推出基于OpenAI的AI代理模式,通过简单提示即可自动生成文档和分析数据。Word用户可享受"氛围写作"功能,利用现有文档组装报告和提案。Excel代理能分析电子表格数据并生成可视化报告。尽管在SpreadsheetBench基准测试中准确率仅为57.2%,低于人类平均水平71.3%,但微软强调其针对实际工作场景优化。此外,微软还发布了基于Anthropic的Office代理,显示其正逐步减少对OpenAI的依赖。
北卡罗来纳大学研究团队通过深入分析手指触控过程中的动态特征,开发出新型触控识别算法,能够理解触控过程中的压力分布、接触面积变化等信息,比传统方法准确率提高15-28%。该技术采用分层处理架构解决计算效率问题,已在真实设备上验证效果,将为个性化交互、情感感知等未来应用奠定基础,有望显著改善用户的触控体验。
OpenAI为美国ChatGPT用户推出"即时结账"功能,用户可在对话中直接购买Etsy和Shopify商品,无需跳转至外部网站。该功能支持Apple Pay、Google Pay等多种支付方式,并计划接入超过100万家Shopify商户。OpenAI还将开源其代理商务协议技术,与谷歌的代理支付协议形成竞争。这标志着电商购物模式的重大转变,AI聊天机器人可能重塑在线零售发现和支付生态系统。
Perfios公司研究团队开发了创新的AI理财顾问训练框架,通过行为心理学驱动的数据生成方法,让8B参数的小模型在个人理财建议方面达到了与32B大模型相当的性能,同时运营成本降低80%。该方法首次将用户心理状态分析作为独立训练阶段,显著提升了AI建议的个性化程度和人性化表达,为普及化AI理财服务提供了技术路径。