多年以来,随着AI技术的发展与变革,各个行业及IT决策者都在大力投资这一领域。AI有望改变企业内的一切、转变人们的工作方式,因此对业务及企业的宏观/微观层面控制体系至关重要。而随着AI的发展演进,我们更需要关注自己的业务功能变化,将每时每刻的需求与改进融入AI解决方案。
虽然只处于试点和起步阶段,AI已经显示出无可比拟的力量与影响力。随着AI的后续发展,预计我们将迎来一波又一波更大、更广泛的变革。那么,AI到底要怎样继续改进?
随着人们对于AI的努力改进,全社会对计算及基础设施资源的需求也将同步增长。当AI真正实现全面普及之后,我们无疑需要一个更经济、更高效的环境容纳如此庞大的流程。每家企业都需要适应这些变化,并以充分的灵活度迎接新型基础设施。换言之,云技术、特别是混合云解决方案,必将成为AI的实现基础。混合云解决方案能够保证将AI基础设施需求消解为业务需求,同时从容维持并匹配技术动态。只有这样,企业才能在持续使用、开发并实现AI方案的同时,不致对自身基础设施性能造成严重影响。
下面,我们就聊聊在评估潜在合作伙伴、选择最佳平台时需要关注的几大核心因素。
核心因素一 高算力
企业需要高性能计算资源(包括CPU与GPU)探索AI领域内的种种可能性。目前大部分企业仍在AI实验阶段,所以倾向于建立强大的CPU环境处理基础AI负载。但事实证明,基于CPU的现有计算架构并不能满足深度学习流程的需求;可扩展神经网络算法的部署以及高性能网络/存储管理都对算力和数据处理密度提出了极高的要求。
核心因素二 存储容量
存储容量是一切AI基础设施的基本要求;随着数据量的增长,存储系统也必须拥有扩展能力。因此对企业来说,最重要的就是明确AI实验究竟需要何等规模的存储系统支持。只有以强大的存储扩展计划与容量管理能力为依托,企业才能从容做出实时决策;也只有这样,我们手中的AI应用才能在数据的滋养下愈发完善。
核心因素三 网络基础设施
无缝网络是AI基础设施中的又一重要组成部分。考虑到可扩展性的重要意义,企业必须建立起高带宽、低延迟的网络体系。深度学习算法高度依赖于通信能力,随着AI实验的推进与扩展,网络系统自然要同步成长与进化。对于网络这种泛用性服务,企业有必要选择一家专业的基础设施服务商,由他们在全球范围内提供服务打包与技术支持,并确保不同区域内的堆栈始终拥有良好的分布式与一致性。
核心因素四 安全性
由于AI模型往往会接触到大量来自医疗保健、金融等部门的敏感数据,因此对个人数据的安全维护就成了一大现实挑战。这些信息在本质上极其脆弱;一旦管理不当、特别是被不可靠来源所利用,则可能对使用AI模型的企业造成巨大危害。此外,如果向AI系统中添加了非必要数据,则可能引发决策和推理错误。因此,我们需要一套更安全的AI基础设施保障数据免受侵扰。
核心因素五 解决方案必须具有成本效益
这一切还只是AI模型的发展起点。随着研究工作的缓慢推进,AI本身也会变得更加复杂、开发成本随之一路飙升。各个企业必须努力找到具有成本效益的解决方案,这样才能推动流程延续与业务增长。具体来讲,企业在支撑AI探索方面势必要不断升级网络、服务器及存储等基础设施,满足AI模型的训练与推理需求。整个过程将极其昂贵,因此必须谨慎选择那些资源经济性更好的服务供应商。只有这样,企业才能更明智地规划、决策并投资于AI基础设施,保证自身在被资源支出压垮之前找到提升自身业务绩效的宝贵机会。
好文章,需要你的鼓励
谷歌CEO皮查伊在AI竞赛低谷期坚持"信号降噪"原则,顶住压力加倍投入,最终带领谷歌凭借Gemini系列重夺领先。他坚信AI将超越火与电的革命性影响,通过递归自我改进极大降低创意实现门槛,这场"创造力民主化"浪潮或将解锁80亿人的认知潜能。
上海交大研究团队开发的VideoREPA是一种突破性的视频生成框架,通过令牌关系蒸馏技术将视频理解模型中的物理知识转移到文本到视频(T2V)扩散模型中。与传统方法不同,VideoREPA关注空间和时间关系的对齐,使生成的视频更符合物理常识。实验表明,这种方法在VideoPhy基准测试中将物理常识分数提高了24.1%,明显优于现有技术。该研究为创建更真实的AI生成视频提供了新思路,展示了理解能力与生成质量间的密切关联。
李飞飞的World Labs以"空间智能"重新定义AI,专注3D物理世界理解,4个月估值飙至10亿美元,获科技巨头集体押注。她揭示语言无法编码物理世界,而DNA双螺旋等突破性发现都源于三维空间的深度认知。
浙江大学和莫纳什大学研究团队开发了PM-Loss,一种用于改进前馈式3D高斯分布渲染的新型正则化损失函数。研究针对深度图在物体边界处的不连续性问题,通过预训练Transformer模型预测的点图提供几何先验知识,实现了更平滑、准确的3D场景重建。实验表明,PM-Loss在多个数据集上显著提升了渲染质量,PSNR提高至少2dB,特别改善了物体边界处的细节表现。该方法易于集成到现有模型中,无需修改架构,为3D视觉和图形学领域提供了新的研究思路。