Rohini Kasturi,SolarWinds 首席产品官兼执行副总裁
IT 专业人员每天都在不停地分析鉴别各种情况,才能勉强赶上不断增加的工作内容和越来越多需要掌握的不同工具。必须改变现状,否则健康、积极的 IT 们也会变得精疲力尽、体力不支,生产力降低,最终导致业务效率长期低下。
其中一个解决方法就是使用Observability,这是一种越来越被广泛采纳的功能,基于输出内容提供的信息来衡量 IT 系统的内部状态。Observability超越了传统的监测,减少了可能会阻碍 ITOps、DevOps 和安全团队操作的干扰。团队可以通过查看端到端服务交付和所有组件依赖关系,主动检测异常问题,以实现最佳 IT 性能和合规性,从而腾出时间专注于更具战略性的业务计划。
除此之外,Observability最大的优点是它的停机率可以几乎为零,若Observability系统由AI/ML模型支持以处理IT操作 (AIOps) ,系统就可以自动进行快速响应。
进一步全面了解Observability
Observability是传统监控在现代 IT 架构时代的发展方向。我们熟悉的监控会捕获和处理大量基础架构和应用遥测数据及通知,它们可以显示哪些组件处于运行状态,哪些处于关闭状态以及哪些发生了变化。但这种监控只关注特定的网络、云端或基础架构,以及跟踪离散的应用程序和基础架构元素,就好像只盯着布条而不是整块布,“只见树木,不见森林”。
现代系统是多云端和混合云系统,需要跨计算、应用和数据库领域进行连接。这些系统会产生大量遥测数据,传统的监控可能无法提供跨域关联、服务交付洞察、运营依赖性或预测性。简而言之,零碎的监控方式无法满足竞争激烈的数字化转型企业的需求。
Observability通过检查外部输出信息来检测系统的内部状态。它着眼于应用程序和系统,包括终端用户体验和服务器端指标和日志,同时采用由监控收集的信息并在此基础上进行构建。一个完备的Observability系统会使用 AI/ML 来快速识别路线修正,或为 IT 专业人员立即采取行动提供重要的洞察。
Observability的好处
IT 组织可以在复杂、多样、分散的混合和多种云环境中不断提高性能、可用性和数字体验。随着Observability使用范围的扩大,企业可期望在以下三个主要方面有所提升。
减少停机时间:有了Observability,服务是可预测的,停机时间会大大减少,因此可以将工作精力投入在其他方面。此外,团队可以在处理问题和异常检测方面变得更加主动,以实现最佳的 IT 性能、合规性和弹性。组织还可以通过内部云连接或软件即服务 (SaaS) 获得全面、集成且经济高效的功能。
减少猜测性操作:我们曾经采用的零碎的监控方式已经一去不复返了。相反,当端到端Observability内嵌机器学习 (ML) 和 AIOps 时,能利用大量收集到的数据来提供洞察、自动化分析和可操作性智能。团队就能宏观看待整个系统,并快速了解问题所在。
Observability加速问题解决:Observability提供了洞察、自动化分析和可操作性智能来快速解决问题,它还可以处理大量实时和历史指标、日志和跟踪数据。
系统运行得更好,客户和员工都从Observability中有所受益。同时,IT 专业人员只需更少的时间就能赶上进度,留出更多的精力改进流程并学习新任务。
我们无法承受系统停机的代价,因此需要Observability,IT 专业人员也必须获得喘息的机会去学习新技能。Observability可谓是当下必需的技术。
好文章,需要你的鼓励
这项研究介绍了一种名为FlowPathAgent的神经符号代理系统,用于解决流程图归因问题。研究团队提出了流程图精细归因这一新任务,构建了FlowExplainBench评估基准,并开发了结合视觉分割、符号图构建和基于代理的图形推理的方法。实验表明,该方法在归因准确性上比现有基线提高了10-14%,特别在处理复杂流程图时表现出色,为提升人工智能系统在处理结构化视觉-文本信息时的可靠性和可解释性提供了新途径。
这项研究首次从神经元层面揭示了大型语言模型(LLM)评估中的"数据污染"机制。研究团队发现当模型在训练中接触过测试数据时,会形成特定的"捷径神经元",使模型无需真正理解问题就能给出正确答案。他们提出了一种新方法,通过识别并抑制这些神经元(仅占模型总神经元的约1%),成功恢复了模型的真实能力表现。实验证明,该方法与权威可信基准测试结果高度一致(相关系数>0.95),并在不同基准和参数设置下都表现出色,为解决LLM评估可信度问题提供了低成本且有效的解决方案。
这份来自向量研究所、康奈尔大学和格罗宁根大学研究团队的综述分析了基于大语言模型的代理型多智能体系统中的信任、风险和安全管理框架(TRiSM)。研究系统地探讨了代理型AI从概念基础到安全挑战,提出了包含治理、可解释性、模型运营和隐私/安全四大支柱的TRiSM框架。文章还详细分析了威胁向量、风险分类,并通过真实案例研究展示了潜在脆弱性。
这项研究提出了一种名为ConfiG的创新方法,通过生成针对性的数据增强样本来解决知识蒸馏中的协变量偏移问题。研究团队利用教师模型和学生模型之间的预测差异,引导扩散模型生成那些能挑战学生模型的样本,从而减少模型对训练数据中欺骗性特征的依赖。实验表明,该方法在CelebA、SpuCo Birds和Spurious ImageNet数据集上显著提升了模型在缺失组别上的性能,为资源受限环境下的AI应用提供了实用解决方案。