Rohini Kasturi,SolarWinds 首席产品官兼执行副总裁
IT 专业人员每天都在不停地分析鉴别各种情况,才能勉强赶上不断增加的工作内容和越来越多需要掌握的不同工具。必须改变现状,否则健康、积极的 IT 们也会变得精疲力尽、体力不支,生产力降低,最终导致业务效率长期低下。
其中一个解决方法就是使用Observability,这是一种越来越被广泛采纳的功能,基于输出内容提供的信息来衡量 IT 系统的内部状态。Observability超越了传统的监测,减少了可能会阻碍 ITOps、DevOps 和安全团队操作的干扰。团队可以通过查看端到端服务交付和所有组件依赖关系,主动检测异常问题,以实现最佳 IT 性能和合规性,从而腾出时间专注于更具战略性的业务计划。
除此之外,Observability最大的优点是它的停机率可以几乎为零,若Observability系统由AI/ML模型支持以处理IT操作 (AIOps) ,系统就可以自动进行快速响应。
进一步全面了解Observability
Observability是传统监控在现代 IT 架构时代的发展方向。我们熟悉的监控会捕获和处理大量基础架构和应用遥测数据及通知,它们可以显示哪些组件处于运行状态,哪些处于关闭状态以及哪些发生了变化。但这种监控只关注特定的网络、云端或基础架构,以及跟踪离散的应用程序和基础架构元素,就好像只盯着布条而不是整块布,“只见树木,不见森林”。
现代系统是多云端和混合云系统,需要跨计算、应用和数据库领域进行连接。这些系统会产生大量遥测数据,传统的监控可能无法提供跨域关联、服务交付洞察、运营依赖性或预测性。简而言之,零碎的监控方式无法满足竞争激烈的数字化转型企业的需求。
Observability通过检查外部输出信息来检测系统的内部状态。它着眼于应用程序和系统,包括终端用户体验和服务器端指标和日志,同时采用由监控收集的信息并在此基础上进行构建。一个完备的Observability系统会使用 AI/ML 来快速识别路线修正,或为 IT 专业人员立即采取行动提供重要的洞察。
Observability的好处
IT 组织可以在复杂、多样、分散的混合和多种云环境中不断提高性能、可用性和数字体验。随着Observability使用范围的扩大,企业可期望在以下三个主要方面有所提升。
减少停机时间:有了Observability,服务是可预测的,停机时间会大大减少,因此可以将工作精力投入在其他方面。此外,团队可以在处理问题和异常检测方面变得更加主动,以实现最佳的 IT 性能、合规性和弹性。组织还可以通过内部云连接或软件即服务 (SaaS) 获得全面、集成且经济高效的功能。
减少猜测性操作:我们曾经采用的零碎的监控方式已经一去不复返了。相反,当端到端Observability内嵌机器学习 (ML) 和 AIOps 时,能利用大量收集到的数据来提供洞察、自动化分析和可操作性智能。团队就能宏观看待整个系统,并快速了解问题所在。
Observability加速问题解决:Observability提供了洞察、自动化分析和可操作性智能来快速解决问题,它还可以处理大量实时和历史指标、日志和跟踪数据。
系统运行得更好,客户和员工都从Observability中有所受益。同时,IT 专业人员只需更少的时间就能赶上进度,留出更多的精力改进流程并学习新任务。
我们无法承受系统停机的代价,因此需要Observability,IT 专业人员也必须获得喘息的机会去学习新技能。Observability可谓是当下必需的技术。
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。