作者:Neo4j大中华区总经理方俊强
呈指数级增长的大数据已然超过了传统数据库的管理范畴。信息不仅在数量上增加,而且也更加复杂。企业正在构建与运营和客户相关的庞大数据存储库,每个实体都有多个信息点和信息层。问题在于如何以有意义和及时的方式存储、处理和分析数据。
许多企业正转向图数据科学存储数据并产生洞察力。对图数据科学的需求不断增加,遍及各行各业,包括金融服务、旅游、零售、公共部门和医疗保健等,希望解决其复杂的问题。
数据库平台 vs 图数据科学平台
如今,通过二维或电子表格显示客户数据库是一种极其有限的方法。这种方法可以存储和查询数据,但在数千行和单元格中,查询模式并不是一个简单或快速的过程。实现不同领域数据的关联极其困难:例如,不仅要确定客户是谁,还包括他们购买了什么、如何购买、在哪里购买以及为何购买。
Neo4j图数据科学利用数十亿甚至数万亿个数据点之间的关联和关系,让连接的数据“自己说话”,例如运行无监督图算法在噪声中发现信号。通过客户数据库,可以显示客户在社区如何互动,对数据分类提供有用信息。
使用图捆绑产品和服务可以实现数据价值最大化,建立每个产品和服务的统一数据库及其规则和关系,以确保捆绑适当的服务。拥有Neo4j图数据库使企业更容易管理其商业产品线层次结构。
另一个实例是一家主流汽车制造商通过创建用于测试数据的知识图谱可以缩短新车的上市时间。来自不同领域的工程师一直在以多种方式进行测试,并使用不同工具以各种格式存储测试数据。这导致了数据的不一致和孤立,对其他团队毫无用处。相反,Neo4j知识图谱关联了所有的产品验证生命周期数据,并允许在企业内整合领域和功能,定义关键元数据,例如测试类型、测量特征和测量条件。为测试、子测试和测量定义明确的语义,使工程师能够跨域和平台沟通。
预测而非应对的方法
在竞争激烈的行业中,企业需要领先一步。 例如,金融机构通常会在欺诈已经发生时才来解决。借助Neo4j图数据科学,个人和实体之间的可疑关联变得可见,可以更早地实施干预。知识图谱可以识别链接个体的链条和环,对与可疑实体有关联的关系做质量、数量和距离的评分。
当识别出一个欺诈圈时,也可以使用相似度算法来识别数据中其他潜在欺诈圈。一旦确定了预测特定结果的模型,即可在未来生成更精准的预测。
某财政部正使用Neo4j图数据科学绘制约150,000个人、公司和文件,以及这些实体之间的约750,000个关系。如果检测到可疑交易,则会分析图中所有与案例相关的信息和文件。法律专家还可以发现仅在第二或第三层次上才明显的关系,而不是只关注表层关系。
解锁供应链
过去几年,供应链面临极大挑战。上海和香港等许多港口都强烈感受到这一点,这些港口是全球主要的枢纽和货物运输中转站。解锁极其复杂的路线和参与者网络,尝试重新安排每天穿越海洋的数万艘集装箱船只的路线是一项极具挑战性的任务。
就本质而言,供应链管理是动态的,有许多变化的环节,并且可能在任何给定点出现瓶颈。但传统数据库生成的数据量大、细节多,缺乏实时、准确的信息处理能力。
相比较,Neo4j知识图谱擅长绘制复杂、相互关联的供应链,即使应对海量数据也能保持高性能。固有的以关系为中心的方法使他们能够更好地管理、读取数据并实现可视化。与传统 SQL 数据库相比,Neo4j图数据库的查询响应速度通常快100倍。
图数据科学对中国企业而言拥有巨大的应用潜力,中国占全球人口的1/5,不仅人口众多,也是经济增长最快的地区之一。通过图数据科学等技术充分利用大数据潜力的企业理当成为其所在领域的领导者。
好文章,需要你的鼓励
亚利桑那州立大学的研究团队开发了RefEdit,这是一种新型图像编辑AI系统,能够准确理解和处理指代表达(如"中间那个人"、"右边的猫")。通过创建RefEdit-Bench基准测试,研究者们证明现有模型在多物体场景中表现不佳。他们设计了一种创新的数据生成流程,仅用2万样本就训练出的RefEdit模型超越了使用数百万样本训练的大型模型。这一突破使AI图像编辑在复杂场景中更加精确和实用。
这项研究提出了Critique-GRPO,一种创新的在线强化学习框架,将自然语言批评与数字反馈相结合,克服了传统仅用数字反馈的三大局限:性能瓶颈、自我反思效果有限和顽固性失败。实验表明,该方法使大语言模型能够从错误中学习并改进,在八项数学和通用推理任务中,将Qwen2.5-7B和Qwen3-8B模型的平均通过率分别提高了约4.5%和5%,超越了包括那些引入专家示范的方法。研究还揭示,高熵探索和长回答并不总是最有效的学习方式,质量更重要。这一方法为大语言模型的自我提升能力开辟了新路径。
这篇研究介绍了"量化LLM评价者",一个创新框架,能使大型语言模型(LLM)在评估其他AI输出时更接近人类判断。由麻省理工和Adobe联合研发的这一方法,将评估过程分为两个阶段:先让LLM生成文本评价,再用轻量级机器学习模型将这些评价转化为更准确的数值评分。研究提出了四种评价者模型,适用于不同评估场景,实验表明它们不仅能显著提高评分准确性,还比传统微调方法更节省计算资源。这一框架特别适合人类反馈有限的场景,为AI评估领域开辟了高效且可解释的新路径。
这项研究由IDEA、华南理工大学和北京大学联合开发的Rex-Thinker系统,通过模仿人类的链式思考方式来解决物体指代问题。与传统直接输出边界框的方法不同,它采用规划-行动-总结的三步骤推理,使AI能像人类一样逐步分析图像中的候选物体,并在找不到匹配物体时拒绝作答。通过构建90,824样本的HumanRef-CoT数据集和两阶段训练方法,系统在精度、可解释性和泛化能力上均取得了显著进步。