
微软公司表示会逐步停止对旗下一些由人工智能驱动的面部识别工具的访问,包括一项基于视频和图像识别情绪的服务。
微软在今天宣布这一决定的同时还公布了一份27页的“负责任的人工智能标准”,标准解释了微软在公平的和值得信赖的人工智能方面的目标。微软为了达到这些标准而限制了一些面部识别工具的访问,包括旗下的AzureFace API、计算机视觉和视频索引器服务提供的面部识别工具。
微软表示,新用户将不会有机会使用这些功能,而现有客户则必须在今年年底前停止使用这些功能。
面部识别技术已经成了民权和隐私团体的一个主要关注点。此前的研究表明,面部识别技术远非完美,经常大比例地误判女性对象及皮肤较黑的人。这在人工智能用于识别犯罪嫌疑人和其他监控情况时可能会导致很大的潜在问题。
而检测情绪的人工智能工具的使用则更是具争议性。今年早些时候,Zoom Video Communications Inc曾宣布考虑增加“情感人工智能”功能,隐私组织Fight for the Future其时曾发起一项运动敦促Zoom不要这样做,因为担心该技术可能被滥用。
围绕面部识别的争议得到各科技公司的重视,亚马逊网络服务公司和Facebook的母公司Meta Platforms Inc.都在缩减对此类工具的使用。
微软首席人工智能负责人Natasha Crampton在一篇博文中表示,微软认识到要使人工智能系统值得信赖,人工智能系统必须是其所要解决的问题的适当解决方案。Crampton表示,面部识别则被认为是不合适的解决方案,微软将搁置推断“情绪状态和身份属性,如性别、年龄、微笑、面部毛发、头发和化妆”的Azure服务。
她还表示,“人工智能系统有可能加剧社会偏见和不平等,可以说是有关这些系统的最广泛认可的危害之一。我们的法律还没有跟上人工智能的独特风险或社会需求。我们看到有迹象表明政府在人工智能方面的行动正在扩大,但我们也认识到我们有责任采取行动。”
分析师们对于微软的决定是否是一个好决定的看法存在分歧。Pund-IT公司的Charles King告诉记者,除了面部识别技术的争议之外,人工智能归类剖析工具的效果也往往不尽如人意,很少能达到其创造者所声称的效果。King表示,“同样重要的是,寻求更好生活的难民及有色人种在这么多地方受到攻击,归类剖析工具被滥用的可能性非常大。因此,我相信微软限制这一类工具使用的决定是非常合理的。”
而Enderle集团的Rob Enderle则表示,看到微软退避面部识别令人失望,这种工具已经从早期的许多错误中取得了很大的进展。他表示,围绕面部识别的负面宣传已经迫使一些大公司远离该领域。
Enderle表示,“基于人工智能的面部识别技术对于抓捕罪犯、恐怖分子和间谍来说太有价值了,所以政府机构也不会停止使用这种技术。然而,微软的退避意味着他们最终将使用来自专业防务公司或外国供应商的工具,这些工具的效果很可能不会太好,而且也缺乏相同种类的控制。妖怪已经放出来了,再扼杀面部识别技术只会令整个社会不能从中获益。”
微软表示,旗下负责任的人工智能标准并不局限于面部识别。微软还会将这些标准应用于Azure人工智能定制神经语音,Azure人工智能定制神经语音是一种语音到文本的服务,可用于支持转录工具。微软的解释是,2020年3月的一项研究发现,非裔美国人和黑人社区使用该软件时错误率较高,鉴于此,微软已经采取措施改进该软件。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。