2022年7月12日,九章云极DataCanvas公司重磅发布又一突破性开源技术成果——YLearn因果学习开源项目,并成功举办线上发布会。
发布会以“从预测到决策,可理解的AI”为主题,特邀因果学习&人工智能领域专家:九章云极DataCanvas联合创始人暨CTO尚明栋,CSDN创始人&董事长、极客帮创投创始合伙人蒋涛,清华大学计算机系长聘副教授、博士生导师崔鹏以及YLearn研发团队,共同探讨当前因果学习在学术界、产业界的最新研究成果,共同推动因果科学的快速发展。
YLearn因果学习开源项目,是全球首款一站式处理因果学习完整流程的开源算法工具包,率先解决了因果学习中“因果发现、因果量识别、因果效应估计、反事实推断和策略学习”五大关键问题,具有一站式、新而全、用途广等特点,将“决策者”使用门槛降到最低,助力政府和企业自动化“决策”能力的有效提升。
YLearn因果学习开源项目是九章云极DataCanvas公司继DAT自动机器学习工具包、DingoDB实时交互式分析数据库之后,发布的第三款开源重器。此后,九章云极DataCanvas公司的开源基础软件版图进一步扩大,融合了AutoML和因果学习等前沿AI技术的开源基础工具系列将进一步加速数据智能在政府和全行业的价值释放。
通过结合前沿学术领域和市场应用领域的创新洞察,九章云极DataCanvas开源项目研发团队发现,尽管目前广泛应用的基于机器学习得出的业务“预测”结果在提升业务收益方面的效果已经十分显著,但随着政府和企业对于“自主AI”和“智能决策”的需求日益旺盛,决策者需要一个让人可理解的、能够解释为什么做出一个决策的“原因”。 “因果关系”的呈现就此成为数据分析和智能决策的刚需功能,而只提供数据“相关性”的机器学习则无法做到这一点。
与“因果学习”(Causal Learning)技术的融合将成为解决这一难题的最优方案,YLearn因果学习开源项目由此诞生。
YLearn因果学习开源项目(以下简称“YLearn”)同样具备九章云极DataCanvas产品“开源、灵活、自动”的基因。立足于开源社区,YLearn旨在填补市场上缺少完整、综合性、端到端因果学习工具包的空白,与全球的开源贡献者共同打造一个端到端、最完整、最系统的因果学习算法工具包,从工具端直接降低“决策者”的使用成本。
目前,YLearn由CausalDiscovery、CausalModel、EstimatorModel、Policy、Interpreter等部件组成,各部件支持独立使用,也支持统一封装。通过这些灵活的组件,YLearn实现了用因果图表示数据集中的因果关系、识别因果效应、概率表达式和各类估计模型等功能,并将紧跟前沿研究持续添加和完善性能。
为了进一步降低使用门槛,除了让使用流程清晰简单、易于上手,YLearn还将融合九章云极DataCanvas公司核心技术——AutoML自动机器学习。通过AutoML技术的加持,YLearn将实现自动调参、自动优化、一键自动生成对应结果“Y”的多种决策方案等“自动化”高级功能;此外,YLearn还将实现基于因果关系的可视化决策图谱,例如设定企业运营的运营指标,通过交互式的方式来推演不同决策带来的影响和效益。
提供了自动化因果关系分析的YLearn因果学习开源项目,将为决策者理解AI决策逻辑、增强AI决策可信度提供重要支撑,将成为打开政府和企业“自动化决策”大门的AI钥匙。
因果学习的潜力和对未来人工智能技术走向的影响力,已经受到学术界和产业界认可。2011年图灵奖得主,贝叶斯网络之父Judea Pearl曾提到,“如果没有对因果关系的推理能力,AI的发展将从根本上受到限制”。
清华大学计算机系长聘副教授、博士生导师崔鹏在本次发布会上指出,“因果统计将在新一代人工智能理论基础层面扮演重要角色”。当前人工智能局限性的根源是“知其然,但不知其所以然”。其中,“知其然”中的“然”指的是数据之间的“关联”关系,“所以然”指的是数据之间的“因果”关系。通过把因果统计引入到机器学习中的多年研究,崔教授团队发现因果统计在解决机器学习的稳定性问题、解释性问题、算法的公平性问题等均有突出的表现。
商业市场上同样呼吁应当加快因果学习技术的产业化应用。在Gartner最新发布的因果学习创新洞察报告《Innovation Insight:Causal AI》中指出, “人工智能必须超越基于相关性的预测,朝向基于因果关系的解决方案,以实现更好的决策和更大的自动化。……因果人工智能对未来至关重要。”
因果学习技术将大力提升人工智能技术的自主性、可解释性、适应性和鲁棒性。这些特性对于基于AI技术实现数智化升级的政府和企业来说,将进一步降本增效,并收获超预期的数据价值。
一项前沿技术能够在商业市场中实现成功的规模化应用,离不开功能强大的开源工具的助推和催化。
正如Sklearn(机器学习领域中最知名的编程模块之一)之于机器学习技术的应用,和TensorFlow、PyTorch(两款用于构建深度学习模型的功能完备的框架)之于深度学习技术应用的重大意义和价值,在因果学习领域也同样亟需一款「开源重器」突破应用瓶颈。
YLearn因果学习开源工具包的出现解决了市场上缺失功能强大且完整的因果学习工具包这一“卡脖子”难题,加速将因果学习技术从“实验室”带入“产业应用”。CSDN创始人&董事长、极客帮创投创始合伙人蒋涛表示,“中国开源正当时,技术走向平民化才有更大的市场,YLearn对于AI技术在各个行业更精细更深入的将会有极大的推动力。
我国的软件产业发展是开源产业成长的基础,为其提供成长土壤。国家高度重视开源产业的发展,并在“十四五”规划中首次把开源纳入顶层设计。九章云极DataCanvas联合创始人暨CTO尚明栋在发布会致辞中表示,“2022已经进入开源的腾飞之年。我们认为在AI领域,软件是基础设施,相比应用软件,开源是基础软件的‘主战场’。”
秉承九章云极DataCanvas公司紧密围绕“数据智能”技术创新理念和“将AI技术融合应用到实际业务场景”的产品文化,九章云极DataCanvas开源项目研发团队创新迭代开源工具的同时,不断吸收来自政府和行业各类场景实际应用的需求和反馈。同时,九章云极DataCanvas公司的AI基础软件产品系列正在与自主研发的开源重器不断融合应用,也将加速政府和企业客户享受AI融合技术的应用带来的业务价值。
好文章,需要你的鼓励
DeepSeek 的 AI 模型在处理效率方面取得重大突破,可能对数据中心产生深远影响。尽管引发了科技股抛售,但业内专家认为,这项创新将推动 AI 应用普及,促进大规模和分布式数据中心基础设施需求增长。更高效的 AI 算法有望降低成本、扩大应用范围,从而加速数据中心行业发展。
Rivian 正全面推进 AI 技术整合,开发下一代电动车平台,以挑战特斯拉的市场地位。公司计划于 2025 年实现免手驾驶,2026 年达到 L3 级自动驾驶。Rivian 还将在车载系统中广泛应用 AI 技术,提供语音交互等功能,并计划推出更实惠的车型,扩大市场份额。
Postman 发布了 AI 代理构建器,这是一款创新的生成式 AI 工具。它允许开发者通过整合大语言模型、API 和工作流程来设计、构建、测试和部署智能代理。这一工具旨在简化 API 交互、优化工作流程,并支持创建能执行复杂任务的智能代理,标志着 API 优先的 AI 开发迈出了重要一步。
微软第二财季利润同比增长10%,人工智能年化收入达130亿美元。然而,云计算业务未达预期,下季度指引不及预期,导致盘后股价下跌。公司资本支出创新高,以满足AI和云需求。尽管Azure增长放缓,但微软对下半年增速加快持乐观态度。同时,中国AI初创公司DeepSeek的崛起引发业界对AI基础设施投资的重新审视。