企业数字化转型,大家往往只关注如何使用技术,然而企业本身的文化是决定数字化转型的根本,同时CIO需要联合业务部门一起推进数字化转型,最后要考虑的才是技术。
最近,红帽总结全球企业数字化转型实践经验,结合中国本土市场、政策与技术特征,绘制了《中国企业数字化转型图谱》,让用户明晰数字化转型下一步需要面对的问题。
图谱中,第一圈分为六个不同维度,也可以说是六个战略,分别针对混合云架构、云原生应用、自动化、开放组织及人才培养、开源赋能、信息化+产业化,第二圈则是对应的技术,最外圈是对应的不同场景和需求。
“六个纬度既是互相关联,又是互相独立。”红帽全球副总裁兼大中华区总裁曹衡康说,一个客户认为目前现代化应用是最关键的,可以先从这个场景做起,在推进的过程中,可能客户又发觉要把应用自动化和混合云结合在一起。
红帽还会通过一些免费的训练营的方式对客户展开更进一步的互动,针对具体情况、行业特点、客户特点制定具体的路线图和图谱。
开源与下一代技术底座
企业下一代技术底座,开源是一个恰如其分的技术。红帽作为开源技术的倡导者,正在不同层面倾听客户的需求,并将开源技术和客户需求进行结合。
“环境一致性和开发流流线型是企业技术底座的两大特点。”曹衡康说道,不管是在数据中心,还是在云上,只要基于红帽的架构,就可以保证一致的体验。
红帽全球副总裁兼大中华区总裁曹衡康
曹衡康认为,下一代技术底座需要满足兼容、开放、敏捷和便利。
兼容:数字化转型涵盖非常广,需要在架构上就具备兼容性,可以兼容不同的产品和解决方案,目前全世界5000多家硬件厂商、4000多家软件厂商都与红帽都有认证兼容。
开放:开源技术源于众人的智慧,红帽是将开源变成企业级的产品,所以开放就是创新。
敏捷:数字化转型需要敏捷,消费者所提出的需求要迅速开发出来,现在微服务开发可以在短时间就开发出来。
便利:平台移动要便利,可以在任何环境实现开发,同时底层技术服务要有更高的自动化。
最近,在2022 Red Hat Summit:Connect(红帽论坛)中国站上,红帽也宣布了2022红帽亚太创新奖中国区获奖名单,联通数科、吉利汽车和迈瑞医疗采用红帽解决方案,在持续变化的商业环境中提高敏捷性并增强客户体验,因此也获得了该奖项。
图谱的演进需要共同努力
“德不孤,必有邻”,红帽也有志同道合的人一起作伴,与硬件厂商合作适配不同的硬件,与ISV合作开发出不同场景的应用,通过强大的生态合作伙伴体系共同完善图谱。
今年红帽也与两个重要的合作伙伴展开合作,一家是地平线,以软硬结合协同优化的技术理念,共同打造面向未来的车载智能计算基础平台。一家是中科创达,打造更多开放创新的系统技术产品和解决方案,通过云端一体融合创新,赋能各行各业的数字化智能化转型。
在曹衡康看来,正因为红帽是开放的体系和平台,也能团结更多的生态伙伴一起帮助客户实现数字化转型,同时不断开发演进图谱。
而且红帽同样希望把选择权交给客户,不会被某些技术所锁定。曹衡康说,选择权、决定权在客户,客户不会被某一个技术所锁定,他可以去做一些改变,让他能更加有弹性。
通过红帽开放创新实验室可以和客户融合在一起,了解需求提供建议。通过访谈的方式了解了企业现状,然后把相关人员放在一个大型会议室里,大家一起头脑风暴,设立一个标准和最后的目标,然后去探讨用什么样的方式去修正现在的工作模式,以达到预期目标。
曹衡康强调红帽所做的事情不只是开源技术,还包括开源的文化、开放的思维,真正能够帮客户打造出来更加自主性,且与时俱进的技术底座,跟随技术的前沿实现开放的未来。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。