Hugging Face是一家主流的机器学习模型托管平台运营商,该公司正在与AWS合作致力于简化人工智能开发项目。
双方近日宣布这一合作伙伴关系,这也是对Hugging Face和AWS在2021年初启动的现有合作的一个延伸。
AWS公司首席执行官Adam Selipsky表示:“生成式人工智能有可能改变整个行业,但其成本和所需的专业知识使除少数公司之外的其他所有公司都无法使用该技术。Hugging Face和AWS让客户能够更轻松地使用主流的机器学习模型,以打造他们自己具有最高性能和最低成本的生成式人工智能应用。”
总部位于纽约的Hugging Face此前获得了超过1.6亿美元的资金支持,运营着一个类似于GitHub的平台,开发人员使用该平台可以托管开源的AI模型,训练数据集等相关技术资产。该平台存储了超过十万个神经网络的代码。
在此次合作中,Hugging Face将使用AWS作为其首选的公有云,此外Hugging Face正在推出和Amazon SageMaker机器学习平台的新集成。该平台包括六种以上的云服务,开发人员可以使用这些服务来构建、训练和部署AI模型。
这一新的集成将让开发人员通过几次点击就能在SageMaker上部署由Hugging Face托管的神经网络。他们把AI模型上传到SageMaker之后,就可以使用由AWS Trainium芯片提供支持的云实例并对其进行训练。这些芯片专门针对AI训练任务进行了优化。
从Hugging Face部署到AWS的神经网络,还可以与其他类型的云实例一起使用,包括那些由AWS Inferentia加速器系列提供支持的实例。Inferentia加速器是一种为执行推理进行了优化的芯片,也可以在训练阶段完成后在生产中运行AI模型。
Hugging Face公司首席执行官Clement Delangue表示:“人工智能的未来就在这里,但分布并不均匀,Amazon SageMaker和AWS设计的芯片将让我们的团队和更大的机器学习群体把最新的研究成果转化为任何人都可以构建的、公开可复制的模型。”
这一集成将是对两家公司目前提供给开发人员的Hugging Face AWS Deep Learning Containers的一项补充,后者让Hugging Face的AI模型以预打包的格式提供给用户,更容易部署在公有云环境中。
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。