Hugging Face是一家主流的机器学习模型托管平台运营商,该公司正在与AWS合作致力于简化人工智能开发项目。
双方近日宣布这一合作伙伴关系,这也是对Hugging Face和AWS在2021年初启动的现有合作的一个延伸。
AWS公司首席执行官Adam Selipsky表示:“生成式人工智能有可能改变整个行业,但其成本和所需的专业知识使除少数公司之外的其他所有公司都无法使用该技术。Hugging Face和AWS让客户能够更轻松地使用主流的机器学习模型,以打造他们自己具有最高性能和最低成本的生成式人工智能应用。”
总部位于纽约的Hugging Face此前获得了超过1.6亿美元的资金支持,运营着一个类似于GitHub的平台,开发人员使用该平台可以托管开源的AI模型,训练数据集等相关技术资产。该平台存储了超过十万个神经网络的代码。
在此次合作中,Hugging Face将使用AWS作为其首选的公有云,此外Hugging Face正在推出和Amazon SageMaker机器学习平台的新集成。该平台包括六种以上的云服务,开发人员可以使用这些服务来构建、训练和部署AI模型。
这一新的集成将让开发人员通过几次点击就能在SageMaker上部署由Hugging Face托管的神经网络。他们把AI模型上传到SageMaker之后,就可以使用由AWS Trainium芯片提供支持的云实例并对其进行训练。这些芯片专门针对AI训练任务进行了优化。
从Hugging Face部署到AWS的神经网络,还可以与其他类型的云实例一起使用,包括那些由AWS Inferentia加速器系列提供支持的实例。Inferentia加速器是一种为执行推理进行了优化的芯片,也可以在训练阶段完成后在生产中运行AI模型。
Hugging Face公司首席执行官Clement Delangue表示:“人工智能的未来就在这里,但分布并不均匀,Amazon SageMaker和AWS设计的芯片将让我们的团队和更大的机器学习群体把最新的研究成果转化为任何人都可以构建的、公开可复制的模型。”
这一集成将是对两家公司目前提供给开发人员的Hugging Face AWS Deep Learning Containers的一项补充,后者让Hugging Face的AI模型以预打包的格式提供给用户,更容易部署在公有云环境中。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。