Hugging Face是一家主流的机器学习模型托管平台运营商,该公司正在与AWS合作致力于简化人工智能开发项目。
双方近日宣布这一合作伙伴关系,这也是对Hugging Face和AWS在2021年初启动的现有合作的一个延伸。
AWS公司首席执行官Adam Selipsky表示:“生成式人工智能有可能改变整个行业,但其成本和所需的专业知识使除少数公司之外的其他所有公司都无法使用该技术。Hugging Face和AWS让客户能够更轻松地使用主流的机器学习模型,以打造他们自己具有最高性能和最低成本的生成式人工智能应用。”
总部位于纽约的Hugging Face此前获得了超过1.6亿美元的资金支持,运营着一个类似于GitHub的平台,开发人员使用该平台可以托管开源的AI模型,训练数据集等相关技术资产。该平台存储了超过十万个神经网络的代码。
在此次合作中,Hugging Face将使用AWS作为其首选的公有云,此外Hugging Face正在推出和Amazon SageMaker机器学习平台的新集成。该平台包括六种以上的云服务,开发人员可以使用这些服务来构建、训练和部署AI模型。
这一新的集成将让开发人员通过几次点击就能在SageMaker上部署由Hugging Face托管的神经网络。他们把AI模型上传到SageMaker之后,就可以使用由AWS Trainium芯片提供支持的云实例并对其进行训练。这些芯片专门针对AI训练任务进行了优化。
从Hugging Face部署到AWS的神经网络,还可以与其他类型的云实例一起使用,包括那些由AWS Inferentia加速器系列提供支持的实例。Inferentia加速器是一种为执行推理进行了优化的芯片,也可以在训练阶段完成后在生产中运行AI模型。
Hugging Face公司首席执行官Clement Delangue表示:“人工智能的未来就在这里,但分布并不均匀,Amazon SageMaker和AWS设计的芯片将让我们的团队和更大的机器学习群体把最新的研究成果转化为任何人都可以构建的、公开可复制的模型。”
这一集成将是对两家公司目前提供给开发人员的Hugging Face AWS Deep Learning Containers的一项补充,后者让Hugging Face的AI模型以预打包的格式提供给用户,更容易部署在公有云环境中。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。