近日微软推出AI工具Dynamics 365 Copilot,该工具引用了OpenAI的ChatGPT进行搜索,微软将其用于商业用户。
这一新的AI助手将利用ChatGPT的生成式AI功能,理解用户编写的自然语音并即时生成回复或者是新的内容。微软正在将这项技术添加到各项应用中,使其可以快速地用来总结会议记录、为客户生成电子邮件内容、自动输入数据并协助完成其他任务。
微软在2月初的时候开始在Bing搜索引擎中使用ChatGPT聊天机器人,以增强搜索和回答功能。该技术使用生成式AI,让用户可以根据从网络搜索中收集的信息提出问题,并获得对话式答案。
微软正在将这种AI助手添加到Dynamics 365 Sales和Viva Sales等工具中,以创建会议摘要、产品和定价信息,以及来自已记录Teams电话的洞察。而将其添加到客户服务工具中,将让用户可以快速起草由AI驱动的电子邮件和聊天,并且这些都完全是由虚拟代理运行的,当AI无法再管理聊天的时候再转交给人类。
营销人员可以利用这个AI助手大大简化他们的工作流程,方法就是要求它通过提问来查看数据,并且通过给这些数据总结出报告并进行回复。以前,营销人员必须手动设计复杂的查询并细分他们自己的客户报告,然后手动阅读这些报告才能得出洞察。而现在,有了Copilot这个AI助手,就可以为他们完成很多繁重的工作,并能够了解他们的需求,甚至可以根据关键主题、现有电子邮件、相关主题等提出建议。
微软业务管理解决方案Dynamics 365 Business Central将让Copilot能够使用元数据中的各种属性(例如颜色、材质和尺寸)快速为店面生成生动的产品描述,还可以调整Copilot的语调、格式和长度以符合客户想要的情绪,这样他们就不需要在副本上线之前对其进行过多的个性化设置。
微软业务应用和平台企业副总裁Charles Lamanna表示:“下一个业务应用时代正在被生成式AI所改变。用户将越来越期望他们的客户关系管理和企业资源规划应用程序能够包含由AI提供支持的专业知识。”
供应链方面也得到了Copilot的AI支持,可以使用Copilot通过访问新闻、天气预报和供应商信息来更好地预测各种中断事件,以主动标记潜在的问题。代理商将可以使用Copilot编写外联电子邮件、重新安排订单路线、预估新的交货日期、选择备用配送中心以满足客户需求。
微软面向商业用户的低代码应用开发平台Power Platform也获得了两项新的AI更新,包括通过对话功能增强了现有机器人,以及向Power Apps和Power Automate中增加了生成式AI模型。
Power Virtual Agents让开发人员可以使用可简化机器人创建的低代码、拖放式可视化界面构建聊天机器人。大多数情况下,这些机器人能够让客户自助完成大量任务,但有的时候也会有他们无法回答的问题,必须交给人类。现在,通过公司网站上训练的生成式AI,机器人可以轻松地回答客户各种问题,而无需写下每个问题和答案。
AI Builder是四年前推出的,主要用于提供对Power Platform中各种强大工具的访问权限,如今,生成式AI模型可以通过Azure OpenAI服务在这个低代码界面上进行预览了。开发人员使用这种新的功能,可以将生成式AI嵌入到他们的应用中,从而构建出许多不同的功能,包括总结报告以及使用Power Automate通过电子邮件进行发送。Power Automate是一款营销应用,可以根据关键字自动生成内容并为社交媒体生成文本。聊天应用可以在会话完成后自动汇总协作线程。
目前,这种对话式助手还处于实验阶段,尚不适用于机器人,但已经可以预览了。带有生成式AI模型的AI Builder模板目前提供了有限的预览。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。