文:Gartner高级首席分析师 费天祺
Gartner 高级研究总监 孙鑫
Gartner 高级研究总监 顾星宇
随着“数据中台”(data middle office,DMO)的普及,中国企业机构希望能更好地管理和利用数据中台背后的数据资产。数据中台早年在一些领域的成功案例使得整个市场对这一概念抱有过高的期望。如今,大多数企业机构仍然认同DMO的概念,但同时也在寻求适当的方法将其应用于实践。另一方面,根据Gartner最近的一项调研(见图1),超过三分之一的企业机构依然对这一概念的可行性和适用性感到困惑。
图1:中国企业对于建设数据中台的态度

而今数据中台这一术语在市场上已逐渐淡化。终端用户和技术提供商两方对数据中台的关注点,都已从概念本身转向最终能实现的数据价值和所需要的能力。为确保顺利向DMO过度,企业机构必须优先考虑以下三个事项。
明确数据中台的价值主张
DMO的主要目的是实现数据一致性和可复用性。这些能力进而可以支持敏捷的数据驱动式管理和组装式D&A服务/产品,以实现业务优化和进一步的数字化。然而,数据中台并非一个颠覆性的技术或工具,也不是一个可以在短期内完成的单一项目。相反,它是一种D&A战略设计,可以通过利用一系列技术和业务实践,将它们与企业机构的整体业务战略挂钩,从而服务于不同的业务重点。
在市场中,“数据中台”是一个总括性术语,包含了D&A基础、D&A标准化以及D&A变现这三个主要数据价值主张的各个方面。Gartner定义了D&A领域的三种基本价值主张——基础设施、业务赋能和转型驱动——三者的收益水平呈渐进式增长。这一价值主张框架也可以视作DMO演进的各个阶段。
根据不同客户的成熟度阶段,DMO带来的价值认知和能力体现不同。信息化水平、数据就绪度和D&A素养水平将成为评估企业数据中台部署能力和部署空间的重要维度。此外,随着业务复杂性和业务规模的增加,数据中台的优势将变得更加明显。
需要注意的是,数据中台并不是为小型企业或业务内容稳定不变的企业而设计的。这类企业机构的D&A领导者应更多地关注较为精简地或具有针对性地D&A项目,从而快速实现业务回报。
根据优先级划定数据中台的范围
在确定了价值主张并了解组织当前状态后,企业机构就可以开始根据目标重点来确定需要实现的数据中台的范围。以往,数据中台一直被视为一个资源密集型的综合性D&A平台,由多个模块构成。但其实,企业机构并非一定要抱着这样的看法,从头开始搭建一个端到端的DMO。
对于数据中台的扩展范围以及是否应该覆盖整个D&A平台,各方观点不一。供应商通常根据自己技术产品的优势来营销数据中台。然而,D&A领导者应根据自身的目标和优先任务、现有D&A架构和生态系统以及资源配置,确定数据中台的技术范围。图2展示了Gartner观察到的不同企业机构中最常见的四种关注类型。
图2:四种常见的数据中台类型

超越技术层面,推动数据中台的长期成功
尽管D&A领导者可以轻松地捕捉和呼应数据中台地概念,但在企业内部地推广中仍有挑战。与纯粹的技术项目不同,数据中台的成功很大程度上取决于业务部门和业务受众的积极参与和协作。然而,在许多情况下,业务用户会将DMO也视为纯粹的技术项目,例如部署数据仓库、部署报表平台或启动数据治理平台。因此,他们错误地认为DMO“应该”不需要他们过多的参与。业务部门对此缺乏共识和理解,是很多企业机构部署数据中台失败的原因。同时,这也会削弱企业机构内部对D&A项目的信任。
为避免这些情况发生,D&A领导者应利用敏捷交付方法,将D&A组织模式重塑为融合团队架构;建立具体的业务价值流程图;并设置级联指标以跟踪进展。
好文章,需要你的鼓励
谷歌宣布开始向Google TV Streamer推出Gemini智能助手,取代原有的Google Assistant。用户可通过更自然的语音交互获取内容推荐,如询问适合夫妻共看的电影或了解剧集剧情。Gemini还支持教育和生活指导功能,能解答各类问题并通过YouTube视频提供DIY项目指导。该更新将在未来几周内向18岁以上用户推送,这是谷歌用Gemini全面替代Google Assistant计划的重要步骤。
香港科技大学团队提出DGPO方法,通过直接学习群体偏好信息,让AI图像生成模型训练速度提升30倍。该方法避免了传统强化学习的低效随机探索,使用确定性采样器生成高质量训练样本,在GenEval基准测试中将性能从63%提升至97%。这一突破显著降低了训练成本,为AI图像生成技术的普及和应用奠定了基础。
在AI快速发展的背景下,创始人与投资者的合作关系变得更加重要。尽管基础模型厂商正主导市场整合,但众多初创企业仍在推动AI创新边界。专家指出,这种合作关系应被视为长期婚姻而非简单商业交易。在竞争激烈的AI市场中,投资者需要更快做出决策,而创始人必须具备快速迭代能力。单位经济学、人才密度和产品扩展能力成为关键评估指标,双方需要建立良好关系以应对这个新兴市场的挑战。
香港城市大学和阿里巴巴集团联合研究团队开发了A?SEARCH系统,专门解决AI在处理模糊问题时只提供单一答案的局限性。该系统通过自动化流程识别并验证多个合理答案,在八个问答数据库的测试中表现出色,仅用单次回答就超越了需要多次尝试的大型传统系统,为构建更智能的问答AI开辟了新路径。